导体$8p$和$2$幂次虚循环场的类群

Pub Date : 2021-01-01 DOI:10.3836/TJM/1502179326
H. Ichimura, Hiroki Sumida-Takahashi
{"title":"导体$8p$和$2$幂次虚循环场的类群","authors":"H. Ichimura, Hiroki Sumida-Takahashi","doi":"10.3836/TJM/1502179326","DOIUrl":null,"url":null,"abstract":"Let $p=2^{e+1}q+1$ be an odd prime number with $2 \\nmid q$. Let $K$ be the imaginary cyclic field of conductor $p$ and degree $2^{e+1}$. We denote by $\\mathcal{F}$ the imaginary quadratic subextension of the imaginary $(2,\\,2)$-extension $K(\\sqrt{2})/K^+$ with $\\mathcal{F} \\neq K$. We determine the Galois module structure of the $2$-part of the class group of $\\mathcal{F}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Class Group of an Imaginary Cyclic Field of Conductor $8p$ and $2$-power Degree\",\"authors\":\"H. Ichimura, Hiroki Sumida-Takahashi\",\"doi\":\"10.3836/TJM/1502179326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p=2^{e+1}q+1$ be an odd prime number with $2 \\\\nmid q$. Let $K$ be the imaginary cyclic field of conductor $p$ and degree $2^{e+1}$. We denote by $\\\\mathcal{F}$ the imaginary quadratic subextension of the imaginary $(2,\\\\,2)$-extension $K(\\\\sqrt{2})/K^+$ with $\\\\mathcal{F} \\\\neq K$. We determine the Galois module structure of the $2$-part of the class group of $\\\\mathcal{F}$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3836/TJM/1502179326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/TJM/1502179326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设$p=2^{e+1}q+1$为奇数,$2 \nmid q$为奇数。设$K$为导体$p$和度$2^{e+1}$的虚循环场。我们用$\mathcal{F} \neq K$表示虚的$(2,\,2)$ -扩展$K(\sqrt{2})/K^+$的虚二次子扩展$\mathcal{F}$。我们确定了$\mathcal{F}$类组中$2$ -部分的伽罗瓦模块结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Class Group of an Imaginary Cyclic Field of Conductor $8p$ and $2$-power Degree
Let $p=2^{e+1}q+1$ be an odd prime number with $2 \nmid q$. Let $K$ be the imaginary cyclic field of conductor $p$ and degree $2^{e+1}$. We denote by $\mathcal{F}$ the imaginary quadratic subextension of the imaginary $(2,\,2)$-extension $K(\sqrt{2})/K^+$ with $\mathcal{F} \neq K$. We determine the Galois module structure of the $2$-part of the class group of $\mathcal{F}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信