{"title":"导体$8p$和$2$幂次虚循环场的类群","authors":"H. Ichimura, Hiroki Sumida-Takahashi","doi":"10.3836/TJM/1502179326","DOIUrl":null,"url":null,"abstract":"Let $p=2^{e+1}q+1$ be an odd prime number with $2 \\nmid q$. Let $K$ be the imaginary cyclic field of conductor $p$ and degree $2^{e+1}$. We denote by $\\mathcal{F}$ the imaginary quadratic subextension of the imaginary $(2,\\,2)$-extension $K(\\sqrt{2})/K^+$ with $\\mathcal{F} \\neq K$. We determine the Galois module structure of the $2$-part of the class group of $\\mathcal{F}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Class Group of an Imaginary Cyclic Field of Conductor $8p$ and $2$-power Degree\",\"authors\":\"H. Ichimura, Hiroki Sumida-Takahashi\",\"doi\":\"10.3836/TJM/1502179326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p=2^{e+1}q+1$ be an odd prime number with $2 \\\\nmid q$. Let $K$ be the imaginary cyclic field of conductor $p$ and degree $2^{e+1}$. We denote by $\\\\mathcal{F}$ the imaginary quadratic subextension of the imaginary $(2,\\\\,2)$-extension $K(\\\\sqrt{2})/K^+$ with $\\\\mathcal{F} \\\\neq K$. We determine the Galois module structure of the $2$-part of the class group of $\\\\mathcal{F}$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3836/TJM/1502179326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/TJM/1502179326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Class Group of an Imaginary Cyclic Field of Conductor $8p$ and $2$-power Degree
Let $p=2^{e+1}q+1$ be an odd prime number with $2 \nmid q$. Let $K$ be the imaginary cyclic field of conductor $p$ and degree $2^{e+1}$. We denote by $\mathcal{F}$ the imaginary quadratic subextension of the imaginary $(2,\,2)$-extension $K(\sqrt{2})/K^+$ with $\mathcal{F} \neq K$. We determine the Galois module structure of the $2$-part of the class group of $\mathcal{F}$.