分解空间的结构化、紧支持的巴拿赫框架分解

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
F. Voigtlaender
{"title":"分解空间的结构化、紧支持的巴拿赫框架分解","authors":"F. Voigtlaender","doi":"10.4064/dm804-5-2021","DOIUrl":null,"url":null,"abstract":"$\\newcommand{mc}[1]{\\mathcal{#1}}$ $\\newcommand{D}{\\mc{D}(\\mc{Q},L^p,\\ell_w^q)}$ We present a framework for the construction of structured, possibly compactly supported Banach frames and atomic decompositions for decomposition spaces. Such a space $\\D$ is defined using a frequency covering $\\mc{Q}=(Q_i)_{i\\in I}$: If $(\\varphi_i)_{i}$ is a suitable partition of unity subordinate to $\\mc{Q}$, then $\\Vert g\\Vert_{\\D}:=\\left\\Vert\\left(\\Vert\\mc{F}^{-1}(\\varphi_i\\hat{g})\\Vert_{L^p}\\right)_{i}\\right\\Vert_{\\ell_w^q}$. \nWe assume $\\mc{Q}=(T_iQ+b_i)_{i}$, with $T_i\\in{\\rm GL}(\\Bbb{R}^d),b_i\\in\\Bbb{R}^d$. Given a prototype $\\gamma$, we consider the system \\[\\Psi_{c}=(L_{c\\cdot T_i^{-T}k}\\gamma^{[i]})_{i\\in I,k\\in\\Bbb{Z}^d}\\text{ with }\\gamma^{[i]}=|\\det T_i|^{1/2}\\, M_{b_i}(\\gamma\\circ T_i^T),\\] with translation $L_x$ and modulation $M_{\\xi}$. We provide verifiable conditions on $\\gamma$ under which $\\Psi_c$ forms a Banach frame or an atomic decomposition for $\\D$, for small enough sampling density $c>0$. Our theory allows compactly supported prototypes and applies for arbitrary $p,q\\in(0,\\infty]$. \nOften, $\\Psi_c$ is both a Banach frame and an atomic decomposition, so that analysis sparsity is equivalent to synthesis sparsity, i.e. the analysis coefficients $(\\langle f,L_{c\\cdot T_i^{-T}k}\\gamma^{[i]}\\rangle)_{i,k}$ lie in $\\ell^p$ iff $f$ belongs to a certain decomposition space, iff $f=\\sum_{i,k}c_k^{(i)}\\cdot L_{c\\cdot T_i^{-T}k}\\gamma^{[i]}$ with $(c_k^{(i)})_{i,k}\\in\\ell^p$. This is convenient if only analysis sparsity is known to hold: Generally, this only yields synthesis sparsity w.r.t. the dual frame, about which often only little is known. But our theory yields synthesis sparsity w.r.t. the well-understood primal frame. \nIn particular, our theory applies to $\\alpha$-modulation spaces and inhom. Besov spaces. It also applies to shearlet frames, as we show in a companion paper.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2016-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Structured, compactly supported Banach frame decompositions of decomposition spaces\",\"authors\":\"F. Voigtlaender\",\"doi\":\"10.4064/dm804-5-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"$\\\\newcommand{mc}[1]{\\\\mathcal{#1}}$ $\\\\newcommand{D}{\\\\mc{D}(\\\\mc{Q},L^p,\\\\ell_w^q)}$ We present a framework for the construction of structured, possibly compactly supported Banach frames and atomic decompositions for decomposition spaces. Such a space $\\\\D$ is defined using a frequency covering $\\\\mc{Q}=(Q_i)_{i\\\\in I}$: If $(\\\\varphi_i)_{i}$ is a suitable partition of unity subordinate to $\\\\mc{Q}$, then $\\\\Vert g\\\\Vert_{\\\\D}:=\\\\left\\\\Vert\\\\left(\\\\Vert\\\\mc{F}^{-1}(\\\\varphi_i\\\\hat{g})\\\\Vert_{L^p}\\\\right)_{i}\\\\right\\\\Vert_{\\\\ell_w^q}$. \\nWe assume $\\\\mc{Q}=(T_iQ+b_i)_{i}$, with $T_i\\\\in{\\\\rm GL}(\\\\Bbb{R}^d),b_i\\\\in\\\\Bbb{R}^d$. Given a prototype $\\\\gamma$, we consider the system \\\\[\\\\Psi_{c}=(L_{c\\\\cdot T_i^{-T}k}\\\\gamma^{[i]})_{i\\\\in I,k\\\\in\\\\Bbb{Z}^d}\\\\text{ with }\\\\gamma^{[i]}=|\\\\det T_i|^{1/2}\\\\, M_{b_i}(\\\\gamma\\\\circ T_i^T),\\\\] with translation $L_x$ and modulation $M_{\\\\xi}$. We provide verifiable conditions on $\\\\gamma$ under which $\\\\Psi_c$ forms a Banach frame or an atomic decomposition for $\\\\D$, for small enough sampling density $c>0$. Our theory allows compactly supported prototypes and applies for arbitrary $p,q\\\\in(0,\\\\infty]$. \\nOften, $\\\\Psi_c$ is both a Banach frame and an atomic decomposition, so that analysis sparsity is equivalent to synthesis sparsity, i.e. the analysis coefficients $(\\\\langle f,L_{c\\\\cdot T_i^{-T}k}\\\\gamma^{[i]}\\\\rangle)_{i,k}$ lie in $\\\\ell^p$ iff $f$ belongs to a certain decomposition space, iff $f=\\\\sum_{i,k}c_k^{(i)}\\\\cdot L_{c\\\\cdot T_i^{-T}k}\\\\gamma^{[i]}$ with $(c_k^{(i)})_{i,k}\\\\in\\\\ell^p$. This is convenient if only analysis sparsity is known to hold: Generally, this only yields synthesis sparsity w.r.t. the dual frame, about which often only little is known. But our theory yields synthesis sparsity w.r.t. the well-understood primal frame. \\nIn particular, our theory applies to $\\\\alpha$-modulation spaces and inhom. Besov spaces. It also applies to shearlet frames, as we show in a companion paper.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2016-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/dm804-5-2021\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm804-5-2021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

$\newcommand{mc}[1]{\mathcal{#1}}$ $\newcommand{D}{\mc{D}(\mc{Q},L^p,\ell_w^q)}$ 我们提出了构造结构化的,可能紧支持的Banach框架和分解空间的原子分解的框架。这样的空间$\D$是使用覆盖$\mc{Q}=(Q_i)_{i\in I}$的频率来定义的:如果$(\varphi_i)_{i}$是隶属于$\mc{Q}$的一个合适的统一分区,那么$\Vert g\Vert_{\D}:=\left\Vert\left(\Vert\mc{F}^{-1}(\varphi_i\hat{g})\Vert_{L^p}\right)_{i}\right\Vert_{\ell_w^q}$。我们假设$\mc{Q}=(T_iQ+b_i)_{i}$和$T_i\in{\rm GL}(\Bbb{R}^d),b_i\in\Bbb{R}^d$。给定一个原型$\gamma$,我们考虑系统\[\Psi_{c}=(L_{c\cdot T_i^{-T}k}\gamma^{[i]})_{i\in I,k\in\Bbb{Z}^d}\text{ with }\gamma^{[i]}=|\det T_i|^{1/2}\, M_{b_i}(\gamma\circ T_i^T),\]具有平移$L_x$和调制$M_{\xi}$。我们在$\gamma$上提供了可验证的条件,在此条件下,对于足够小的采样密度$c>0$, $\Psi_c$形成了一个Banach框架或$\D$的原子分解。我们的理论允许紧凑支持的原型,并适用于任意$p,q\in(0,\infty]$。通常,$\Psi_c$既是巴拿赫框架又是原子分解,因此分析稀疏性等同于综合稀疏性,即分析系数$(\langle f,L_{c\cdot T_i^{-T}k}\gamma^{[i]}\rangle)_{i,k}$位于$\ell^p$中,iff $f$属于某一分解空间,iff $f=\sum_{i,k}c_k^{(i)}\cdot L_{c\cdot T_i^{-T}k}\gamma^{[i]}$与$(c_k^{(i)})_{i,k}\in\ell^p$。如果只知道分析稀疏性是成立的,这是很方便的:通常,这只产生综合稀疏性,而不是对偶框架,而对偶框架通常知之甚少。但我们的理论产生了合成稀疏性,而不是我们熟知的原始框架。特别地,我们的理论适用于$\alpha$ -调制空间和inhm。贝索夫空间。它也适用于剪切框架,正如我们在同伴论文中所展示的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structured, compactly supported Banach frame decompositions of decomposition spaces
$\newcommand{mc}[1]{\mathcal{#1}}$ $\newcommand{D}{\mc{D}(\mc{Q},L^p,\ell_w^q)}$ We present a framework for the construction of structured, possibly compactly supported Banach frames and atomic decompositions for decomposition spaces. Such a space $\D$ is defined using a frequency covering $\mc{Q}=(Q_i)_{i\in I}$: If $(\varphi_i)_{i}$ is a suitable partition of unity subordinate to $\mc{Q}$, then $\Vert g\Vert_{\D}:=\left\Vert\left(\Vert\mc{F}^{-1}(\varphi_i\hat{g})\Vert_{L^p}\right)_{i}\right\Vert_{\ell_w^q}$. We assume $\mc{Q}=(T_iQ+b_i)_{i}$, with $T_i\in{\rm GL}(\Bbb{R}^d),b_i\in\Bbb{R}^d$. Given a prototype $\gamma$, we consider the system \[\Psi_{c}=(L_{c\cdot T_i^{-T}k}\gamma^{[i]})_{i\in I,k\in\Bbb{Z}^d}\text{ with }\gamma^{[i]}=|\det T_i|^{1/2}\, M_{b_i}(\gamma\circ T_i^T),\] with translation $L_x$ and modulation $M_{\xi}$. We provide verifiable conditions on $\gamma$ under which $\Psi_c$ forms a Banach frame or an atomic decomposition for $\D$, for small enough sampling density $c>0$. Our theory allows compactly supported prototypes and applies for arbitrary $p,q\in(0,\infty]$. Often, $\Psi_c$ is both a Banach frame and an atomic decomposition, so that analysis sparsity is equivalent to synthesis sparsity, i.e. the analysis coefficients $(\langle f,L_{c\cdot T_i^{-T}k}\gamma^{[i]}\rangle)_{i,k}$ lie in $\ell^p$ iff $f$ belongs to a certain decomposition space, iff $f=\sum_{i,k}c_k^{(i)}\cdot L_{c\cdot T_i^{-T}k}\gamma^{[i]}$ with $(c_k^{(i)})_{i,k}\in\ell^p$. This is convenient if only analysis sparsity is known to hold: Generally, this only yields synthesis sparsity w.r.t. the dual frame, about which often only little is known. But our theory yields synthesis sparsity w.r.t. the well-understood primal frame. In particular, our theory applies to $\alpha$-modulation spaces and inhom. Besov spaces. It also applies to shearlet frames, as we show in a companion paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信