{"title":"模块化Gromov-Hausdorff逼近","authors":"Frédéric Latrémolière","doi":"10.4064/dm778-5-2019","DOIUrl":null,"url":null,"abstract":"Motivated by the quest for an analogue of the Gromov-Hausdorff distance in noncommutative geometry which is well-behaved with respect to C*-algebraic structures, we propose a complete metric on the class of Leibniz quantum compact metric spaces, named the dual Gromov-Hausdorff propinquity. This metric resolves several important issues raised by recent research in noncommutative metric geometry: it makes *-isomorphism a necessary condition for distance zero, it is well-adapted to Leibniz seminorms, and — very importantly — is complete, unlike the quantum propinquity which we introduced earlier. Thus our new metric provides a natural tool for noncommutative metric geometry, designed to allow for the generalizations of techniques from metric geometry to C*-algebra theory. Resume: Motives par la quete d’une metrique analogue a la distance de Gromov-Hausdorff pour la geometrie noncommutative et adaptee aux C*-algebres, nous proposons une distance complete sur la classe des espaces metriques compacts quantiques de Leibniz. Cette nouvelle distance, que nous appelons la proximite duale de Gromov-Hausdorff, resout plusieurs problemes importants que la recherche courante en geometrie metrique noncommutative a reveles. En particulier, il est necessaire pour les C*-algebres d’etre isomorphes pour avoir distance zero, et tous les espaces quantiques compacts impliques dans le calcul de la proximite duale sont de type Leibniz. En outre, notre distance est complete. Notre proximite duale de Gromov-Hausdorff est donc un nouvel outil naturel pour le developpement de la geometrie metrique noncommutative.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2016-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"The modular Gromov–Hausdorff propinquity\",\"authors\":\"Frédéric Latrémolière\",\"doi\":\"10.4064/dm778-5-2019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the quest for an analogue of the Gromov-Hausdorff distance in noncommutative geometry which is well-behaved with respect to C*-algebraic structures, we propose a complete metric on the class of Leibniz quantum compact metric spaces, named the dual Gromov-Hausdorff propinquity. This metric resolves several important issues raised by recent research in noncommutative metric geometry: it makes *-isomorphism a necessary condition for distance zero, it is well-adapted to Leibniz seminorms, and — very importantly — is complete, unlike the quantum propinquity which we introduced earlier. Thus our new metric provides a natural tool for noncommutative metric geometry, designed to allow for the generalizations of techniques from metric geometry to C*-algebra theory. Resume: Motives par la quete d’une metrique analogue a la distance de Gromov-Hausdorff pour la geometrie noncommutative et adaptee aux C*-algebres, nous proposons une distance complete sur la classe des espaces metriques compacts quantiques de Leibniz. Cette nouvelle distance, que nous appelons la proximite duale de Gromov-Hausdorff, resout plusieurs problemes importants que la recherche courante en geometrie metrique noncommutative a reveles. En particulier, il est necessaire pour les C*-algebres d’etre isomorphes pour avoir distance zero, et tous les espaces quantiques compacts impliques dans le calcul de la proximite duale sont de type Leibniz. En outre, notre distance est complete. Notre proximite duale de Gromov-Hausdorff est donc un nouvel outil naturel pour le developpement de la geometrie metrique noncommutative.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2016-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/dm778-5-2019\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm778-5-2019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Motivated by the quest for an analogue of the Gromov-Hausdorff distance in noncommutative geometry which is well-behaved with respect to C*-algebraic structures, we propose a complete metric on the class of Leibniz quantum compact metric spaces, named the dual Gromov-Hausdorff propinquity. This metric resolves several important issues raised by recent research in noncommutative metric geometry: it makes *-isomorphism a necessary condition for distance zero, it is well-adapted to Leibniz seminorms, and — very importantly — is complete, unlike the quantum propinquity which we introduced earlier. Thus our new metric provides a natural tool for noncommutative metric geometry, designed to allow for the generalizations of techniques from metric geometry to C*-algebra theory. Resume: Motives par la quete d’une metrique analogue a la distance de Gromov-Hausdorff pour la geometrie noncommutative et adaptee aux C*-algebres, nous proposons une distance complete sur la classe des espaces metriques compacts quantiques de Leibniz. Cette nouvelle distance, que nous appelons la proximite duale de Gromov-Hausdorff, resout plusieurs problemes importants que la recherche courante en geometrie metrique noncommutative a reveles. En particulier, il est necessaire pour les C*-algebres d’etre isomorphes pour avoir distance zero, et tous les espaces quantiques compacts impliques dans le calcul de la proximite duale sont de type Leibniz. En outre, notre distance est complete. Notre proximite duale de Gromov-Hausdorff est donc un nouvel outil naturel pour le developpement de la geometrie metrique noncommutative.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.