非紧化轨道的微分同胚群

IF 1.5 3区 数学 Q1 MATHEMATICS
Alexander Schmeding
{"title":"非紧化轨道的微分同胚群","authors":"Alexander Schmeding","doi":"10.4064/dm507-0-1","DOIUrl":null,"url":null,"abstract":"We endow the diffeomorphism group of a paracompact (reduced) orbifold with the structure of an infinite dimensional Lie group modelled on the space of compactly supported sections of the tangent orbibundle. For a second countable orbifold, we prove that this Lie group is C^0-regular and thus regular in the sense of Milnor. Furthermore an explicit characterization of the Lie algebra associated to the diffeomorphism group of an orbifold is given.","PeriodicalId":51016,"journal":{"name":"Dissertationes Mathematicae","volume":"507 1","pages":"1-179"},"PeriodicalIF":1.5000,"publicationDate":"2013-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"The diffeomorphism group of a non-compact orbifold\",\"authors\":\"Alexander Schmeding\",\"doi\":\"10.4064/dm507-0-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We endow the diffeomorphism group of a paracompact (reduced) orbifold with the structure of an infinite dimensional Lie group modelled on the space of compactly supported sections of the tangent orbibundle. For a second countable orbifold, we prove that this Lie group is C^0-regular and thus regular in the sense of Milnor. Furthermore an explicit characterization of the Lie algebra associated to the diffeomorphism group of an orbifold is given.\",\"PeriodicalId\":51016,\"journal\":{\"name\":\"Dissertationes Mathematicae\",\"volume\":\"507 1\",\"pages\":\"1-179\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2013-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dissertationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/dm507-0-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissertationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm507-0-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 21

摘要

我们将仿紧(约化)轨道束的微分同构群赋予在切轨道束紧支撑截面空间上建模的无限维李群结构。对于第二个可数轨道,我们证明了这个李群是C^0正则的,因此在Milnor意义上是正则的。此外,给出了与轨道折叠的微分同构群相关的李代数的一个显式刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The diffeomorphism group of a non-compact orbifold
We endow the diffeomorphism group of a paracompact (reduced) orbifold with the structure of an infinite dimensional Lie group modelled on the space of compactly supported sections of the tangent orbibundle. For a second countable orbifold, we prove that this Lie group is C^0-regular and thus regular in the sense of Milnor. Furthermore an explicit characterization of the Lie algebra associated to the diffeomorphism group of an orbifold is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
8
审稿时长
>12 weeks
期刊介绍: DISSERTATIONES MATHEMATICAE publishes long research papers (preferably 50-100 pages) in any area of mathematics. An important feature of papers accepted for publication should be their utility for a broad readership of specialists in the domain. In particular, the papers should be to some reasonable extent self-contained. The paper version is considered as primary. The following criteria are taken into account in the reviewing procedure: correctness, mathematical level, mathematical novelty, utility for a broad readership of specialists in the domain, language and editorial aspects. The Editors have adopted appropriate procedures to avoid ghostwriting and guest authorship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信