Banach空间的加权微分同构群与加权映射群

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
B. Walter
{"title":"Banach空间的加权微分同构群与加权映射群","authors":"B. Walter","doi":"10.4064/dm484-0-1","DOIUrl":null,"url":null,"abstract":"In this work, we construct and study certain classes of infinite dimensional Lie groups that are modelled on weighted function spaces. In particular, we construct a Lie group of weighted diffeomorphisms on a Banach space. Further, we also construct certain types of weighted mapping groups. Both the weighted diffeomorphism groups and the weighted mapping groups are shown to be regular Lie groups in Milnor's sense. We also discuss semidirect products of the former groups. Moreover, we study the integrability of Lie algebras of certain vector fields.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2010-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Weighted diffeomorphism groups of Banach spaces and weighted mapping groups\",\"authors\":\"B. Walter\",\"doi\":\"10.4064/dm484-0-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we construct and study certain classes of infinite dimensional Lie groups that are modelled on weighted function spaces. In particular, we construct a Lie group of weighted diffeomorphisms on a Banach space. Further, we also construct certain types of weighted mapping groups. Both the weighted diffeomorphism groups and the weighted mapping groups are shown to be regular Lie groups in Milnor's sense. We also discuss semidirect products of the former groups. Moreover, we study the integrability of Lie algebras of certain vector fields.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2010-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/dm484-0-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm484-0-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 26

摘要

在这项工作中,我们构造和研究了一类在加权函数空间上建模的无限维李群。特别地,我们构造了Banach空间上的加权微分同态李群。此外,我们还构造了某些类型的加权映射组。在米尔诺意义上证明了加权差分同构群和加权映射群都是正则李群。我们还讨论了前一群的半直积。此外,我们还研究了某些向量场的李代数的可积性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted diffeomorphism groups of Banach spaces and weighted mapping groups
In this work, we construct and study certain classes of infinite dimensional Lie groups that are modelled on weighted function spaces. In particular, we construct a Lie group of weighted diffeomorphisms on a Banach space. Further, we also construct certain types of weighted mapping groups. Both the weighted diffeomorphism groups and the weighted mapping groups are shown to be regular Lie groups in Milnor's sense. We also discuss semidirect products of the former groups. Moreover, we study the integrability of Lie algebras of certain vector fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信