混合光滑性占主导地位的函数空间中的差异与积分

IF 1.5 3区 数学 Q1 MATHEMATICS
Lev Markhasin
{"title":"混合光滑性占主导地位的函数空间中的差异与积分","authors":"Lev Markhasin","doi":"10.4064/dm494-0-1","DOIUrl":null,"url":null,"abstract":"Optimal lower bounds for discrepancy in Besov spaces with dominating mixed smoothness are known from the work of Triebel. Hinrichs proved upper bounds in the plane. In this work we systematically analyse the problem, starting with a survey of discrepancy results and the calculation of the best known constant in Roth's Theorem. We give a larger class of point sets satisfying the optimal upper bounds than already known from Hinrichs for the plane and solve the problem in arbitrary dimension for certain parameters considering a celebrated constructions by Chen and Skriganov which are known to achieve optimal $L_2$-norm of the discrepancy function. Since those constructions are $b$-adic, we give $b$-adic characterizations of the spaces. Finally results for Triebel-Lizorkin and Sobolev spaces with dominating mixed smoothness and for the integration error are concluded.","PeriodicalId":51016,"journal":{"name":"Dissertationes Mathematicae","volume":"79 1","pages":"1-81"},"PeriodicalIF":1.5000,"publicationDate":"2013-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Discrepancy and integration in function spaces with dominating mixed smoothness\",\"authors\":\"Lev Markhasin\",\"doi\":\"10.4064/dm494-0-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal lower bounds for discrepancy in Besov spaces with dominating mixed smoothness are known from the work of Triebel. Hinrichs proved upper bounds in the plane. In this work we systematically analyse the problem, starting with a survey of discrepancy results and the calculation of the best known constant in Roth's Theorem. We give a larger class of point sets satisfying the optimal upper bounds than already known from Hinrichs for the plane and solve the problem in arbitrary dimension for certain parameters considering a celebrated constructions by Chen and Skriganov which are known to achieve optimal $L_2$-norm of the discrepancy function. Since those constructions are $b$-adic, we give $b$-adic characterizations of the spaces. Finally results for Triebel-Lizorkin and Sobolev spaces with dominating mixed smoothness and for the integration error are concluded.\",\"PeriodicalId\":51016,\"journal\":{\"name\":\"Dissertationes Mathematicae\",\"volume\":\"79 1\",\"pages\":\"1-81\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2013-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dissertationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/dm494-0-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissertationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm494-0-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 28

摘要

从triiebel的工作中得到了具有混合光滑性的Besov空间中差异的最优下界。辛里奇证明了平面的上界。在这项工作中,我们系统地分析了这个问题,从对差异结果的调查和罗斯定理中最著名常数的计算开始。我们给出了比Hinrichs已知的平面最优上界更大的一类点集,并考虑到Chen和Skriganov已知的最优L_2 -范数构造,在任意维度上解决了某些参数下的问题。由于这些结构是$b$进的,我们给出了空间的$b$进的表征。最后给出了混合光滑占主导地位的triiebel - lizorkin和Sobolev空间以及积分误差的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrepancy and integration in function spaces with dominating mixed smoothness
Optimal lower bounds for discrepancy in Besov spaces with dominating mixed smoothness are known from the work of Triebel. Hinrichs proved upper bounds in the plane. In this work we systematically analyse the problem, starting with a survey of discrepancy results and the calculation of the best known constant in Roth's Theorem. We give a larger class of point sets satisfying the optimal upper bounds than already known from Hinrichs for the plane and solve the problem in arbitrary dimension for certain parameters considering a celebrated constructions by Chen and Skriganov which are known to achieve optimal $L_2$-norm of the discrepancy function. Since those constructions are $b$-adic, we give $b$-adic characterizations of the spaces. Finally results for Triebel-Lizorkin and Sobolev spaces with dominating mixed smoothness and for the integration error are concluded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
8
审稿时长
>12 weeks
期刊介绍: DISSERTATIONES MATHEMATICAE publishes long research papers (preferably 50-100 pages) in any area of mathematics. An important feature of papers accepted for publication should be their utility for a broad readership of specialists in the domain. In particular, the papers should be to some reasonable extent self-contained. The paper version is considered as primary. The following criteria are taken into account in the reviewing procedure: correctness, mathematical level, mathematical novelty, utility for a broad readership of specialists in the domain, language and editorial aspects. The Editors have adopted appropriate procedures to avoid ghostwriting and guest authorship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信