单基因四项、五项和六项的无限族

IF 0.4 4区 数学 Q4 MATHEMATICS
L. Jones
{"title":"单基因四项、五项和六项的无限族","authors":"L. Jones","doi":"10.4064/cm8552-4-2021","DOIUrl":null,"url":null,"abstract":". Let f ( x ) ∈ Z [ x ] be monic, with deg( f ) = n . We say f ( x ) is monogenic if f ( x ) is irreducible over Q and { 1 , α, α 2 , . . . , α n − 1 } is a basis for the ring of integers of K = Q ( α ) , where f ( α ) = 0 . In this article, we derive a new polynomial discriminant formula, and we use it to construct infinite families of monogenic quadrinomials, quintinomials and sextinomials for any degree n ≥ 3 , 4 , 5 , respectively. These results extend previous work of the author. We also give a brief discussion concerning the adaptation of our approach beyond sextinomials.","PeriodicalId":49216,"journal":{"name":"Colloquium Mathematicum","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Infinite families of monogenic quadrinomials, quintinomials and sextinomials\",\"authors\":\"L. Jones\",\"doi\":\"10.4064/cm8552-4-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let f ( x ) ∈ Z [ x ] be monic, with deg( f ) = n . We say f ( x ) is monogenic if f ( x ) is irreducible over Q and { 1 , α, α 2 , . . . , α n − 1 } is a basis for the ring of integers of K = Q ( α ) , where f ( α ) = 0 . In this article, we derive a new polynomial discriminant formula, and we use it to construct infinite families of monogenic quadrinomials, quintinomials and sextinomials for any degree n ≥ 3 , 4 , 5 , respectively. These results extend previous work of the author. We also give a brief discussion concerning the adaptation of our approach beyond sextinomials.\",\"PeriodicalId\":49216,\"journal\":{\"name\":\"Colloquium Mathematicum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8552-4-2021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8552-4-2021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

. 设f (x)∈Z [x]是单元的,且deg(f) = n。如果f (x)在Q和{1,α, α 2,…上不可约,我们说f (x)是单基因的。, α n−1}是K = Q (α)的整数环的一组基,其中f (α) = 0。本文导出了一个新的多项式判别公式,并利用它分别构造了n≥3,4,5次的单基因四项、五项和六项的无穷族。这些结果扩展了作者以前的工作。我们还简要讨论了我们的方法在性系以外的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinite families of monogenic quadrinomials, quintinomials and sextinomials
. Let f ( x ) ∈ Z [ x ] be monic, with deg( f ) = n . We say f ( x ) is monogenic if f ( x ) is irreducible over Q and { 1 , α, α 2 , . . . , α n − 1 } is a basis for the ring of integers of K = Q ( α ) , where f ( α ) = 0 . In this article, we derive a new polynomial discriminant formula, and we use it to construct infinite families of monogenic quadrinomials, quintinomials and sextinomials for any degree n ≥ 3 , 4 , 5 , respectively. These results extend previous work of the author. We also give a brief discussion concerning the adaptation of our approach beyond sextinomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Colloquium Mathematicum is a journal devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research, interesting new proofs of important theorems and research-expository papers in all fields of pure mathematics. Two issues constitute a volume, and at least four volumes are published each year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信