约翰域上改进的加权poincar不等式及其在散度方程中的应用

IF 0.4 4区 数学 Q4 MATHEMATICS
M. E. Cejas
{"title":"约翰域上改进的加权poincar<e:1>不等式及其在散度方程中的应用","authors":"M. E. Cejas","doi":"10.4064/cm8464-5-2021","DOIUrl":null,"url":null,"abstract":". We extend some results related to the Poincaré inequality and solvability of divergence obtained in [G. Acosta et al., Ann. Acad. Sci. Fenn. Math. 42 (2017)]. More precisely, we generalize to unbounded John domains the general theorem that provides a sufficient condition on a weight to support a weighted improved Poincaré inequality. Next, we apply this inequality to study the solvability of the divergence equation in weighted Sobolev spaces. As a consequence, we prove the solvability in weighted Sobolev spaces for weights in classes bigger than A p .","PeriodicalId":49216,"journal":{"name":"Colloquium Mathematicum","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved weighted Poincaré inequalities in John domains and application to the divergence equation\",\"authors\":\"M. E. Cejas\",\"doi\":\"10.4064/cm8464-5-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We extend some results related to the Poincaré inequality and solvability of divergence obtained in [G. Acosta et al., Ann. Acad. Sci. Fenn. Math. 42 (2017)]. More precisely, we generalize to unbounded John domains the general theorem that provides a sufficient condition on a weight to support a weighted improved Poincaré inequality. Next, we apply this inequality to study the solvability of the divergence equation in weighted Sobolev spaces. As a consequence, we prove the solvability in weighted Sobolev spaces for weights in classes bigger than A p .\",\"PeriodicalId\":49216,\"journal\":{\"name\":\"Colloquium Mathematicum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8464-5-2021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8464-5-2021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

. 推广了文献[G]中关于poincar不等式和散度可解性的一些结果。阿科斯塔等人,安。学会科学。芬恩。数学,42(2017)]。更准确地说,我们将提供了支持加权改进庞卡罗不等式的权的充分条件的一般定理推广到无界约翰域。然后,我们应用这个不等式研究了散度方程在加权Sobolev空间中的可解性。因此,我们证明了权值大于a p的类在加权Sobolev空间中的可解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved weighted Poincaré inequalities in John domains and application to the divergence equation
. We extend some results related to the Poincaré inequality and solvability of divergence obtained in [G. Acosta et al., Ann. Acad. Sci. Fenn. Math. 42 (2017)]. More precisely, we generalize to unbounded John domains the general theorem that provides a sufficient condition on a weight to support a weighted improved Poincaré inequality. Next, we apply this inequality to study the solvability of the divergence equation in weighted Sobolev spaces. As a consequence, we prove the solvability in weighted Sobolev spaces for weights in classes bigger than A p .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Colloquium Mathematicum is a journal devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research, interesting new proofs of important theorems and research-expository papers in all fields of pure mathematics. Two issues constitute a volume, and at least four volumes are published each year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信