关于二义轨迹的一个旧定理Erdős

IF 0.4 4区 数学 Q4 MATHEMATICS
P. Hajłasz
{"title":"关于二义轨迹的一个旧定理Erdős","authors":"P. Hajłasz","doi":"10.4064/cm8460-9-2021","DOIUrl":null,"url":null,"abstract":". Erdős proved in 1946 that if a set E ⊂ R n is closed and non-empty, then the set, called ambiguous locus or medial axis, of points in R n with the property that the nearest point in E is not unique, can be covered by countably many surfaces, each of finite ( n − 1) -dimensional measure. We improve the result by obtaining a new regularity result for these surfaces in terms of convexity and C 2 regularity.","PeriodicalId":49216,"journal":{"name":"Colloquium Mathematicum","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On an old theorem of Erdős about ambiguous locus\",\"authors\":\"P. Hajłasz\",\"doi\":\"10.4064/cm8460-9-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Erdős proved in 1946 that if a set E ⊂ R n is closed and non-empty, then the set, called ambiguous locus or medial axis, of points in R n with the property that the nearest point in E is not unique, can be covered by countably many surfaces, each of finite ( n − 1) -dimensional measure. We improve the result by obtaining a new regularity result for these surfaces in terms of convexity and C 2 regularity.\",\"PeriodicalId\":49216,\"journal\":{\"name\":\"Colloquium Mathematicum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8460-9-2021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8460-9-2021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

. Erdős在1946年证明了如果集合E∧R n是闭的非空的,那么这个集合(称为二义轨迹或中轴线)在R n中的点具有E中最近的点不是唯一的性质,可以被可数的多个有限(n−1)维测度的曲面所覆盖。我们从凸性和c2正则性两个方面得到了一个新的正则性结果,从而对结果进行了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On an old theorem of Erdős about ambiguous locus
. Erdős proved in 1946 that if a set E ⊂ R n is closed and non-empty, then the set, called ambiguous locus or medial axis, of points in R n with the property that the nearest point in E is not unique, can be covered by countably many surfaces, each of finite ( n − 1) -dimensional measure. We improve the result by obtaining a new regularity result for these surfaces in terms of convexity and C 2 regularity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Colloquium Mathematicum is a journal devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research, interesting new proofs of important theorems and research-expository papers in all fields of pure mathematics. Two issues constitute a volume, and at least four volumes are published each year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信