{"title":"利用soa环镜和连续波保持波束实现全光位速率灵活的nrz - rz转换","authors":"Hyuek-Jae Lee","doi":"10.3807/JOSK.2016.20.4.464","DOIUrl":null,"url":null,"abstract":"All-optical non-return-to-zero (NRZ) -toreturn-to-zero (RZ) data-format conversion has been successfully demonstrated using a semiconductor optical amplifier in a fiber-loop mirror (so-called SOA-loop mirror) with a continuous-wave (CW) holding beam. The converted RZ signal after pulse compression has been used to create a 40 Gb/s OTDM (Optical Time Division Multiplexing) signal. Here is proposed an NRZ-to-RZ conversion method without any additional optical clocks, unlike conventional methods based on optical AND logic. In addition, it has the merit of operating at various bit-rate speeds without any controlling device. Moreover, it has a simple structure, and it can be used for all-optical bit-rate-flexible clock recovery.","PeriodicalId":49986,"journal":{"name":"Journal of the Optical Society of Korea","volume":"20 1","pages":"464-469"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-Optical Bit-Rate Flexible NRZ-to-RZ Conversion Using an SOA-Loop Mirror and a CW Holding Beam\",\"authors\":\"Hyuek-Jae Lee\",\"doi\":\"10.3807/JOSK.2016.20.4.464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All-optical non-return-to-zero (NRZ) -toreturn-to-zero (RZ) data-format conversion has been successfully demonstrated using a semiconductor optical amplifier in a fiber-loop mirror (so-called SOA-loop mirror) with a continuous-wave (CW) holding beam. The converted RZ signal after pulse compression has been used to create a 40 Gb/s OTDM (Optical Time Division Multiplexing) signal. Here is proposed an NRZ-to-RZ conversion method without any additional optical clocks, unlike conventional methods based on optical AND logic. In addition, it has the merit of operating at various bit-rate speeds without any controlling device. Moreover, it has a simple structure, and it can be used for all-optical bit-rate-flexible clock recovery.\",\"PeriodicalId\":49986,\"journal\":{\"name\":\"Journal of the Optical Society of Korea\",\"volume\":\"20 1\",\"pages\":\"464-469\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Optical Society of Korea\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3807/JOSK.2016.20.4.464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3807/JOSK.2016.20.4.464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Physics and Astronomy","Score":null,"Total":0}
All-Optical Bit-Rate Flexible NRZ-to-RZ Conversion Using an SOA-Loop Mirror and a CW Holding Beam
All-optical non-return-to-zero (NRZ) -toreturn-to-zero (RZ) data-format conversion has been successfully demonstrated using a semiconductor optical amplifier in a fiber-loop mirror (so-called SOA-loop mirror) with a continuous-wave (CW) holding beam. The converted RZ signal after pulse compression has been used to create a 40 Gb/s OTDM (Optical Time Division Multiplexing) signal. Here is proposed an NRZ-to-RZ conversion method without any additional optical clocks, unlike conventional methods based on optical AND logic. In addition, it has the merit of operating at various bit-rate speeds without any controlling device. Moreover, it has a simple structure, and it can be used for all-optical bit-rate-flexible clock recovery.