{"title":"有限群上乘法李代数结构的分类","authors":"Mani Shankar Pandey, S. Upadhyay","doi":"10.4064/cm8397-12-2020","DOIUrl":null,"url":null,"abstract":". Every multiplicative Lie algebra structure on a group G determines a group homomorphism from the exterior square G ∧ G to G . We give a precise character-ization of the group homomorphisms G ∧ G → G which determine a multiplicative Lie algebra structure on G . For certain finite groups, we determine the number of possible images (up to isomorphism) of such structure-defining maps.","PeriodicalId":49216,"journal":{"name":"Colloquium Mathematicum","volume":"57 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification of multiplicative Lie algebra structures on a finite group\",\"authors\":\"Mani Shankar Pandey, S. Upadhyay\",\"doi\":\"10.4064/cm8397-12-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Every multiplicative Lie algebra structure on a group G determines a group homomorphism from the exterior square G ∧ G to G . We give a precise character-ization of the group homomorphisms G ∧ G → G which determine a multiplicative Lie algebra structure on G . For certain finite groups, we determine the number of possible images (up to isomorphism) of such structure-defining maps.\",\"PeriodicalId\":49216,\"journal\":{\"name\":\"Colloquium Mathematicum\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8397-12-2020\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8397-12-2020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Classification of multiplicative Lie algebra structures on a finite group
. Every multiplicative Lie algebra structure on a group G determines a group homomorphism from the exterior square G ∧ G to G . We give a precise character-ization of the group homomorphisms G ∧ G → G which determine a multiplicative Lie algebra structure on G . For certain finite groups, we determine the number of possible images (up to isomorphism) of such structure-defining maps.
期刊介绍:
Colloquium Mathematicum is a journal devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research, interesting new proofs of important theorems and research-expository papers in all fields of pure mathematics.
Two issues constitute a volume, and at least four volumes are published each year.