连续体长超空间映射间的伪同伦

IF 0.4 4区 数学 Q4 MATHEMATICS
F. Capulín, E. Castañeda-Alvarado, L. Juárez-Villa, David Maya
{"title":"连续体长超空间映射间的伪同伦","authors":"F. Capulín, E. Castañeda-Alvarado, L. Juárez-Villa, David Maya","doi":"10.4064/cm8254-7-2021","DOIUrl":null,"url":null,"abstract":". We introduce the concept of g-growth hyperspace: if X is a continuum, then a non-empty subset H of 2 X is a g-growth hyperspace of X provided that if A is a subcontinuum of 2 X and A∩H (cid:54) = ∅ , then (cid:83) A ∈ H . We study pseudo-homotopies between maps of hyperspaces of continua. As a consequence, we show that pseudo-contractibility and contractibility are equivalent in g-growth hyperspaces.","PeriodicalId":49216,"journal":{"name":"Colloquium Mathematicum","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pseudo-homotopies between maps on\\ng-growth hyperspaces of continua\",\"authors\":\"F. Capulín, E. Castañeda-Alvarado, L. Juárez-Villa, David Maya\",\"doi\":\"10.4064/cm8254-7-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We introduce the concept of g-growth hyperspace: if X is a continuum, then a non-empty subset H of 2 X is a g-growth hyperspace of X provided that if A is a subcontinuum of 2 X and A∩H (cid:54) = ∅ , then (cid:83) A ∈ H . We study pseudo-homotopies between maps of hyperspaces of continua. As a consequence, we show that pseudo-contractibility and contractibility are equivalent in g-growth hyperspaces.\",\"PeriodicalId\":49216,\"journal\":{\"name\":\"Colloquium Mathematicum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8254-7-2021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8254-7-2021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

. 引入g生长超空间的概念:若X是连续统,则2x的非空子集H是X的g生长超空间,若a是2x的子连续统且a∩H (cid:54) =∅,则(cid:83) a∈H。研究了连续超空间映射之间的伪同伦。因此,我们证明了伪可收缩性和可收缩性在g增长超空间中是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pseudo-homotopies between maps on g-growth hyperspaces of continua
. We introduce the concept of g-growth hyperspace: if X is a continuum, then a non-empty subset H of 2 X is a g-growth hyperspace of X provided that if A is a subcontinuum of 2 X and A∩H (cid:54) = ∅ , then (cid:83) A ∈ H . We study pseudo-homotopies between maps of hyperspaces of continua. As a consequence, we show that pseudo-contractibility and contractibility are equivalent in g-growth hyperspaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Colloquium Mathematicum is a journal devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research, interesting new proofs of important theorems and research-expository papers in all fields of pure mathematics. Two issues constitute a volume, and at least four volumes are published each year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信