F. Capulín, E. Castañeda-Alvarado, L. Juárez-Villa, David Maya
{"title":"连续体长超空间映射间的伪同伦","authors":"F. Capulín, E. Castañeda-Alvarado, L. Juárez-Villa, David Maya","doi":"10.4064/cm8254-7-2021","DOIUrl":null,"url":null,"abstract":". We introduce the concept of g-growth hyperspace: if X is a continuum, then a non-empty subset H of 2 X is a g-growth hyperspace of X provided that if A is a subcontinuum of 2 X and A∩H (cid:54) = ∅ , then (cid:83) A ∈ H . We study pseudo-homotopies between maps of hyperspaces of continua. As a consequence, we show that pseudo-contractibility and contractibility are equivalent in g-growth hyperspaces.","PeriodicalId":49216,"journal":{"name":"Colloquium Mathematicum","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pseudo-homotopies between maps on\\ng-growth hyperspaces of continua\",\"authors\":\"F. Capulín, E. Castañeda-Alvarado, L. Juárez-Villa, David Maya\",\"doi\":\"10.4064/cm8254-7-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We introduce the concept of g-growth hyperspace: if X is a continuum, then a non-empty subset H of 2 X is a g-growth hyperspace of X provided that if A is a subcontinuum of 2 X and A∩H (cid:54) = ∅ , then (cid:83) A ∈ H . We study pseudo-homotopies between maps of hyperspaces of continua. As a consequence, we show that pseudo-contractibility and contractibility are equivalent in g-growth hyperspaces.\",\"PeriodicalId\":49216,\"journal\":{\"name\":\"Colloquium Mathematicum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8254-7-2021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8254-7-2021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Pseudo-homotopies between maps on
g-growth hyperspaces of continua
. We introduce the concept of g-growth hyperspace: if X is a continuum, then a non-empty subset H of 2 X is a g-growth hyperspace of X provided that if A is a subcontinuum of 2 X and A∩H (cid:54) = ∅ , then (cid:83) A ∈ H . We study pseudo-homotopies between maps of hyperspaces of continua. As a consequence, we show that pseudo-contractibility and contractibility are equivalent in g-growth hyperspaces.
期刊介绍:
Colloquium Mathematicum is a journal devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research, interesting new proofs of important theorems and research-expository papers in all fields of pure mathematics.
Two issues constitute a volume, and at least four volumes are published each year.