闭黎曼流形上二次曲率函数临界度量的刚性

IF 0.4 4区 数学 Q4 MATHEMATICS
B. Ma, Guangyue Huang
{"title":"闭黎曼流形上二次曲率函数临界度量的刚性","authors":"B. Ma, Guangyue Huang","doi":"10.4064/cm8236-6-2021","DOIUrl":null,"url":null,"abstract":". We study rigidity of critical metrics for quadratic curvature functions F t,s ( g ) involving the scalar curvature, the Ricci curvature and the Riemannian curvature tensor. In particular, when s = 0 , we give new characterizations by pointwise inequali-ties involving the Weyl curvature and the traceless Ricci tensor for critical metrics with divergence-free Cotton tensor. We also provide a few rigidity results for locally conformally flat critical metrics. Secondary 53C21.","PeriodicalId":49216,"journal":{"name":"Colloquium Mathematicum","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidity of critical metrics for quadratic curvature functions on closed Riemannian manifolds\",\"authors\":\"B. Ma, Guangyue Huang\",\"doi\":\"10.4064/cm8236-6-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We study rigidity of critical metrics for quadratic curvature functions F t,s ( g ) involving the scalar curvature, the Ricci curvature and the Riemannian curvature tensor. In particular, when s = 0 , we give new characterizations by pointwise inequali-ties involving the Weyl curvature and the traceless Ricci tensor for critical metrics with divergence-free Cotton tensor. We also provide a few rigidity results for locally conformally flat critical metrics. Secondary 53C21.\",\"PeriodicalId\":49216,\"journal\":{\"name\":\"Colloquium Mathematicum\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8236-6-2021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8236-6-2021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

. 研究涉及标量曲率、里奇曲率和黎曼曲率张量的二次曲率函数F、s (g)的临界度量的刚性。特别地,当s = 0时,我们用涉及Weyl曲率和无迹Ricci张量的点向不等式给出了具有无散度Cotton张量的临界度量的新的表征。我们还提供了一些局部共形平面临界指标的刚性结果。二次53 c21。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity of critical metrics for quadratic curvature functions on closed Riemannian manifolds
. We study rigidity of critical metrics for quadratic curvature functions F t,s ( g ) involving the scalar curvature, the Ricci curvature and the Riemannian curvature tensor. In particular, when s = 0 , we give new characterizations by pointwise inequali-ties involving the Weyl curvature and the traceless Ricci tensor for critical metrics with divergence-free Cotton tensor. We also provide a few rigidity results for locally conformally flat critical metrics. Secondary 53C21.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Colloquium Mathematicum is a journal devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research, interesting new proofs of important theorems and research-expository papers in all fields of pure mathematics. Two issues constitute a volume, and at least four volumes are published each year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信