最大熵的测量不具有吉布斯性质的遗传子移

IF 0.4 4区 数学 Q4 MATHEMATICS
J. Kułaga-Przymus, Michał Lemańczyk
{"title":"最大熵的测量不具有吉布斯性质的遗传子移","authors":"J. Kułaga-Przymus, Michał Lemańczyk","doi":"10.4064/CM8223-11-2020","DOIUrl":null,"url":null,"abstract":". We show that the measure of maximal entropy for the hereditary closure of a B -free subshift has the Gibbs property if and only if the Mirsky measure of the subshift is purely atomic. This answers an open question asked by Peckner. Moreover, we show that B is taut whenever the corresponding Mirsky measure ν η has full support. This is the converse to a recent result of Keller.","PeriodicalId":49216,"journal":{"name":"Colloquium Mathematicum","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hereditary subshifts whose measure of maximal entropy does not have the Gibbs property\",\"authors\":\"J. Kułaga-Przymus, Michał Lemańczyk\",\"doi\":\"10.4064/CM8223-11-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We show that the measure of maximal entropy for the hereditary closure of a B -free subshift has the Gibbs property if and only if the Mirsky measure of the subshift is purely atomic. This answers an open question asked by Peckner. Moreover, we show that B is taut whenever the corresponding Mirsky measure ν η has full support. This is the converse to a recent result of Keller.\",\"PeriodicalId\":49216,\"journal\":{\"name\":\"Colloquium Mathematicum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/CM8223-11-2020\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/CM8223-11-2020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

. 我们证明了当且仅当子位移的米尔斯基测度是纯原子时,无B子位移的遗传闭包的最大熵测度具有吉布斯性质。这回答了Peckner提出的一个开放性问题。此外,当相应的米尔斯基测量ν η有充分支持时,我们表明B是紧绷的。这与凯勒最近的研究结果相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hereditary subshifts whose measure of maximal entropy does not have the Gibbs property
. We show that the measure of maximal entropy for the hereditary closure of a B -free subshift has the Gibbs property if and only if the Mirsky measure of the subshift is purely atomic. This answers an open question asked by Peckner. Moreover, we show that B is taut whenever the corresponding Mirsky measure ν η has full support. This is the converse to a recent result of Keller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Colloquium Mathematicum is a journal devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research, interesting new proofs of important theorems and research-expository papers in all fields of pure mathematics. Two issues constitute a volume, and at least four volumes are published each year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信