一种改进的水平集图像分割方法

Jianzhe Wang, Juanli Li
{"title":"一种改进的水平集图像分割方法","authors":"Jianzhe Wang, Juanli Li","doi":"10.3923/JSE.2016.155.162","DOIUrl":null,"url":null,"abstract":"Times New Roman, 8.5. Level set methods have been extensively used in image segmentation, but their implementation is complex and computationally expensive. By analyzing all segmentation algorithms based on level set, a new one based on template is proposed. This method firstly preprocessed the images by gray processing and de-noising. Then, optimized the image contour by using level set algorithm based on partial sample. Finally, extracted the target object by using the mean value replaced extraction algorithm. The experiment results show that this algorithm can obtain the satisfactory effect in segmentation precision and speed.","PeriodicalId":30943,"journal":{"name":"Journal of Software Engineering","volume":"10 1","pages":"155-162"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Images Segmentation Methods Based on Level Set\",\"authors\":\"Jianzhe Wang, Juanli Li\",\"doi\":\"10.3923/JSE.2016.155.162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Times New Roman, 8.5. Level set methods have been extensively used in image segmentation, but their implementation is complex and computationally expensive. By analyzing all segmentation algorithms based on level set, a new one based on template is proposed. This method firstly preprocessed the images by gray processing and de-noising. Then, optimized the image contour by using level set algorithm based on partial sample. Finally, extracted the target object by using the mean value replaced extraction algorithm. The experiment results show that this algorithm can obtain the satisfactory effect in segmentation precision and speed.\",\"PeriodicalId\":30943,\"journal\":{\"name\":\"Journal of Software Engineering\",\"volume\":\"10 1\",\"pages\":\"155-162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3923/JSE.2016.155.162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3923/JSE.2016.155.162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Times New Roman, 8.5。水平集方法在图像分割中得到了广泛的应用,但其实现复杂且计算量大。在分析各种基于水平集的分割算法的基础上,提出了一种新的基于模板的水平集分割算法。该方法首先对图像进行灰度处理和去噪处理。然后,采用基于部分样本的水平集算法对图像轮廓进行优化。最后,采用均值替代提取算法提取目标物体。实验结果表明,该算法在分割精度和速度上都取得了满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Images Segmentation Methods Based on Level Set
Times New Roman, 8.5. Level set methods have been extensively used in image segmentation, but their implementation is complex and computationally expensive. By analyzing all segmentation algorithms based on level set, a new one based on template is proposed. This method firstly preprocessed the images by gray processing and de-noising. Then, optimized the image contour by using level set algorithm based on partial sample. Finally, extracted the target object by using the mean value replaced extraction algorithm. The experiment results show that this algorithm can obtain the satisfactory effect in segmentation precision and speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信