一类非线性椭圆不等式Liouville性质的尖锐条件

IF 0.4 4区 数学 Q4 MATHEMATICS
P. Souplet
{"title":"一类非线性椭圆不等式Liouville性质的尖锐条件","authors":"P. Souplet","doi":"10.4064/cm8147-1-2020","DOIUrl":null,"url":null,"abstract":". We study a class of elliptic inequalities which arise in the study of blow-up rate estimates for parabolic problems, and obtain a sharp existence/nonexistence result. Namely, for any p ≥ 1 , we show that the inequality ∆u + u p ≤ ε in R n with u (0) = 1 admits a radial, positive nonincreasing solution for all ε > 0 if and only if n ≥ 2 . This solves a problem left open in [Souplet & Tayachi, Colloq. Math. 88 (2001)]. The result stands in contrast with the classical case ε = 0 .","PeriodicalId":49216,"journal":{"name":"Colloquium Mathematicum","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sharp condition for the Liouville property in a class of nonlinear elliptic inequalities\",\"authors\":\"P. Souplet\",\"doi\":\"10.4064/cm8147-1-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We study a class of elliptic inequalities which arise in the study of blow-up rate estimates for parabolic problems, and obtain a sharp existence/nonexistence result. Namely, for any p ≥ 1 , we show that the inequality ∆u + u p ≤ ε in R n with u (0) = 1 admits a radial, positive nonincreasing solution for all ε > 0 if and only if n ≥ 2 . This solves a problem left open in [Souplet & Tayachi, Colloq. Math. 88 (2001)]. The result stands in contrast with the classical case ε = 0 .\",\"PeriodicalId\":49216,\"journal\":{\"name\":\"Colloquium Mathematicum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8147-1-2020\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8147-1-2020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

. 研究了抛物型问题爆破率估计中出现的一类椭圆型不等式,得到了一个尖锐的存在/不存在性结果。即,对于任意p≥1,我们证明了当且仅当n≥2时,不等式∆u + u p≤ε在R n中,u(0) = 1有一个径向的,正的非递增解。这解决了[Souplet & Tayachi, Colloq. Math. 88(2001)]中留下的一个问题。结果与经典情况ε = 0相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp condition for the Liouville property in a class of nonlinear elliptic inequalities
. We study a class of elliptic inequalities which arise in the study of blow-up rate estimates for parabolic problems, and obtain a sharp existence/nonexistence result. Namely, for any p ≥ 1 , we show that the inequality ∆u + u p ≤ ε in R n with u (0) = 1 admits a radial, positive nonincreasing solution for all ε > 0 if and only if n ≥ 2 . This solves a problem left open in [Souplet & Tayachi, Colloq. Math. 88 (2001)]. The result stands in contrast with the classical case ε = 0 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Colloquium Mathematicum is a journal devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research, interesting new proofs of important theorems and research-expository papers in all fields of pure mathematics. Two issues constitute a volume, and at least four volumes are published each year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信