R. Kafle, Dooyoung Kim, Martin E. Malandro, M. Holt
下载PDF
{"title":"模拟德克萨斯州的COVID-19阳性率和住院率","authors":"R. Kafle, Dooyoung Kim, Martin E. Malandro, M. Holt","doi":"10.3233/MAS-210514","DOIUrl":null,"url":null,"abstract":"The aim of this study was to jointly model COVID-19 test positivity rates and hospitalizations in Texas using Bayesian joinpoint regression. The data for both test positivity rates and hospitalizations were obtained from the Texas Department of State Health Services between April 5 and October 19, 2020. The stage 1 model identifies four significant shifts in test positivity rates, three of which occur roughly 9 days after documented policy or behavioral changes statewide. Estimated positivity rates from the first model were then used to predict hospitalization rates and to estimate lag time between changes in positivity and hospitalization. The resulting lag time is 9.056 days (± 3.808). Both models are valuable to policy makers and public health officials as they study the impact of behavioral patterns on disease prevalence and resulting hospitalizations. © 2021 - IOS Press. All rights reserved.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":"16 1","pages":"53-58"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/MAS-210514","citationCount":"4","resultStr":"{\"title\":\"Modeling COVID-19 positivity rates and hospitalizations in Texas\",\"authors\":\"R. Kafle, Dooyoung Kim, Martin E. Malandro, M. Holt\",\"doi\":\"10.3233/MAS-210514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study was to jointly model COVID-19 test positivity rates and hospitalizations in Texas using Bayesian joinpoint regression. The data for both test positivity rates and hospitalizations were obtained from the Texas Department of State Health Services between April 5 and October 19, 2020. The stage 1 model identifies four significant shifts in test positivity rates, three of which occur roughly 9 days after documented policy or behavioral changes statewide. Estimated positivity rates from the first model were then used to predict hospitalization rates and to estimate lag time between changes in positivity and hospitalization. The resulting lag time is 9.056 days (± 3.808). Both models are valuable to policy makers and public health officials as they study the impact of behavioral patterns on disease prevalence and resulting hospitalizations. © 2021 - IOS Press. All rights reserved.\",\"PeriodicalId\":35000,\"journal\":{\"name\":\"Model Assisted Statistics and Applications\",\"volume\":\"16 1\",\"pages\":\"53-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/MAS-210514\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Model Assisted Statistics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/MAS-210514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/MAS-210514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4
引用
批量引用