蒙特卡洛的冒险

IF 0.6 Q4 HOSPITALITY, LEISURE, SPORT & TOURISM
Richard Demsyn-Jones
{"title":"蒙特卡洛的冒险","authors":"Richard Demsyn-Jones","doi":"10.3233/JSA-170220","DOIUrl":null,"url":null,"abstract":"Estimating probability is the very core of forecasting. Increasing computing power has enabled researchers to design highly intractable probability models, such that model results are identified through the Monte Carlo method of repeated stochastic simulation. However, confidence in the Monte Carlo identification of the model can be mistaken for accuracy in the underlying model itself. This paper describes simulations in a problem space of topical interest: basketball season forecasting. Monte Carlo simulations are widely used in sports forecasting, since the multitude of possibilities makes direct calculation of playoff probabilities infeasible. Error correlation across games requires due care, as demonstrated with a realistic multilevel basketball model, similar to some in use today. The model is built separately for each of 20 NBA seasons, modeling team strength as a composition of player strength and player allocation of minutes, while also incorporating team persistent effects. Each season is evaluated out-of-time, collectively demonstrating systematic and substantial overconfidence in playoff probabilities, which can be eliminated by incorporating error correlation. This paper focuses on clarifying the use of Monte Carlo simulations for probability calculations in sports.","PeriodicalId":53203,"journal":{"name":"Journal of Sports Analytics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/JSA-170220","citationCount":"2","resultStr":"{\"title\":\"Misadventures in Monte Carlo\",\"authors\":\"Richard Demsyn-Jones\",\"doi\":\"10.3233/JSA-170220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating probability is the very core of forecasting. Increasing computing power has enabled researchers to design highly intractable probability models, such that model results are identified through the Monte Carlo method of repeated stochastic simulation. However, confidence in the Monte Carlo identification of the model can be mistaken for accuracy in the underlying model itself. This paper describes simulations in a problem space of topical interest: basketball season forecasting. Monte Carlo simulations are widely used in sports forecasting, since the multitude of possibilities makes direct calculation of playoff probabilities infeasible. Error correlation across games requires due care, as demonstrated with a realistic multilevel basketball model, similar to some in use today. The model is built separately for each of 20 NBA seasons, modeling team strength as a composition of player strength and player allocation of minutes, while also incorporating team persistent effects. Each season is evaluated out-of-time, collectively demonstrating systematic and substantial overconfidence in playoff probabilities, which can be eliminated by incorporating error correlation. This paper focuses on clarifying the use of Monte Carlo simulations for probability calculations in sports.\",\"PeriodicalId\":53203,\"journal\":{\"name\":\"Journal of Sports Analytics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/JSA-170220\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sports Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/JSA-170220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"HOSPITALITY, LEISURE, SPORT & TOURISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sports Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/JSA-170220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 2

摘要

概率估计是预测的核心。不断提高的计算能力使研究人员能够设计高度难处理的概率模型,从而通过重复随机模拟的蒙特卡罗方法来识别模型结果。然而,对模型的蒙特卡罗识别的信心可能被误认为是基础模型本身的准确性。本文描述了一个备受关注的问题空间的模拟:篮球赛季预测。蒙特卡罗模拟被广泛应用于体育预测,因为大量的可能性使得直接计算季后赛的概率是不可能的。游戏间的误差相关性需要适当的注意,正如现实的多层次篮球模型所展示的那样,类似于今天使用的一些模型。该模型是针对20个NBA赛季分别建立的,将球队实力建模为球员实力和球员上场时间分配的组合,同时也考虑了球队的持续效应。每个赛季的评估都是在时间之外进行的,总体上表明了对季后赛概率的系统性和实质性的过度自信,这可以通过结合误差相关性来消除。本文的重点是澄清蒙特卡罗模拟在体育运动中的概率计算的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Misadventures in Monte Carlo
Estimating probability is the very core of forecasting. Increasing computing power has enabled researchers to design highly intractable probability models, such that model results are identified through the Monte Carlo method of repeated stochastic simulation. However, confidence in the Monte Carlo identification of the model can be mistaken for accuracy in the underlying model itself. This paper describes simulations in a problem space of topical interest: basketball season forecasting. Monte Carlo simulations are widely used in sports forecasting, since the multitude of possibilities makes direct calculation of playoff probabilities infeasible. Error correlation across games requires due care, as demonstrated with a realistic multilevel basketball model, similar to some in use today. The model is built separately for each of 20 NBA seasons, modeling team strength as a composition of player strength and player allocation of minutes, while also incorporating team persistent effects. Each season is evaluated out-of-time, collectively demonstrating systematic and substantial overconfidence in playoff probabilities, which can be eliminated by incorporating error correlation. This paper focuses on clarifying the use of Monte Carlo simulations for probability calculations in sports.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
9.10%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信