梁的弯曲和Λ-fractional分析

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
K. A. Lazopoulos, A. Lazopoulos
{"title":"梁的弯曲和Λ-fractional分析","authors":"K. A. Lazopoulos, A. Lazopoulos","doi":"10.3934/matersci.2023034","DOIUrl":null,"url":null,"abstract":"Since the global stability criteria for Λ-fractional mechanics have been established, the Λ-fractional beam bending problem is discussed within that context. The co-existence of the phase phenomenon is revealed, allowing for elastic curves with non-smooth curvatures. The variational bending problem in the Λ-fractional space is considered. Global minimization of the total energy function of beam bending is necessarily applied. The variational Euler-Lagrange equation yields an equilibrium equation of the elastic curve, with the simultaneous possible corners being expressed by Weierstrass-Erdmann corner conditions.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beam bending and Λ-fractional analysis\",\"authors\":\"K. A. Lazopoulos, A. Lazopoulos\",\"doi\":\"10.3934/matersci.2023034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the global stability criteria for Λ-fractional mechanics have been established, the Λ-fractional beam bending problem is discussed within that context. The co-existence of the phase phenomenon is revealed, allowing for elastic curves with non-smooth curvatures. The variational bending problem in the Λ-fractional space is considered. Global minimization of the total energy function of beam bending is necessarily applied. The variational Euler-Lagrange equation yields an equilibrium equation of the elastic curve, with the simultaneous possible corners being expressed by Weierstrass-Erdmann corner conditions.\",\"PeriodicalId\":7670,\"journal\":{\"name\":\"AIMS Materials Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/matersci.2023034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2023034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于建立了Λ-fractional力学的全局稳定准则,因此在此背景下讨论了Λ-fractional梁弯曲问题。揭示了相现象的共存,允许具有非光滑曲率的弹性曲线。研究了Λ-fractional空间中的变分弯曲问题。必须应用梁弯曲总能量函数的全局最小化。变分欧拉-拉格朗日方程得到弹性曲线的平衡方程,同时可能的角用Weierstrass-Erdmann角条件表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beam bending and Λ-fractional analysis
Since the global stability criteria for Λ-fractional mechanics have been established, the Λ-fractional beam bending problem is discussed within that context. The co-existence of the phase phenomenon is revealed, allowing for elastic curves with non-smooth curvatures. The variational bending problem in the Λ-fractional space is considered. Global minimization of the total energy function of beam bending is necessarily applied. The variational Euler-Lagrange equation yields an equilibrium equation of the elastic curve, with the simultaneous possible corners being expressed by Weierstrass-Erdmann corner conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Materials Science
AIMS Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
4 weeks
期刊介绍: AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信