{"title":"FTO/PbS阴极煅烧温度对量子点敏化太阳能电池性能的影响","authors":"H. Tung, H. Dan, Dang Huu Phuc","doi":"10.3934/matersci.2023023","DOIUrl":null,"url":null,"abstract":"As a cheaper alternative to the industrial Pt electrode used in quantum-sensitized solar cells, the electrophoresis process is employed to create the low-cost FTO/PbS cathode. For structural cubic and sizes ranging from 40 nm to 200 nm, structure and morphology were investigated using high-resolution scanning electron microscopy and X-ray diffraction. The conversion efficiency of solar cells is significantly impacted by the calcination temperatures of cathodes at 100 ℃, 150 ℃, 200 ℃, and 300 ℃ under vacuum. The FTO/PbS cathode electrode was therefore calcined at 150 ℃ with a maximum efficiency of 3.938%. This happens as a result of the complete fusion of PbS nanoparticles with crystal at 150 ℃, which reduces resistance and increases electron lifetime compared to other temperature combinations.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the calcination temperature of the FTO/PbS cathode on the performance of a quantum dot-sensitized solar cell\",\"authors\":\"H. Tung, H. Dan, Dang Huu Phuc\",\"doi\":\"10.3934/matersci.2023023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a cheaper alternative to the industrial Pt electrode used in quantum-sensitized solar cells, the electrophoresis process is employed to create the low-cost FTO/PbS cathode. For structural cubic and sizes ranging from 40 nm to 200 nm, structure and morphology were investigated using high-resolution scanning electron microscopy and X-ray diffraction. The conversion efficiency of solar cells is significantly impacted by the calcination temperatures of cathodes at 100 ℃, 150 ℃, 200 ℃, and 300 ℃ under vacuum. The FTO/PbS cathode electrode was therefore calcined at 150 ℃ with a maximum efficiency of 3.938%. This happens as a result of the complete fusion of PbS nanoparticles with crystal at 150 ℃, which reduces resistance and increases electron lifetime compared to other temperature combinations.\",\"PeriodicalId\":7670,\"journal\":{\"name\":\"AIMS Materials Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/matersci.2023023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2023023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of the calcination temperature of the FTO/PbS cathode on the performance of a quantum dot-sensitized solar cell
As a cheaper alternative to the industrial Pt electrode used in quantum-sensitized solar cells, the electrophoresis process is employed to create the low-cost FTO/PbS cathode. For structural cubic and sizes ranging from 40 nm to 200 nm, structure and morphology were investigated using high-resolution scanning electron microscopy and X-ray diffraction. The conversion efficiency of solar cells is significantly impacted by the calcination temperatures of cathodes at 100 ℃, 150 ℃, 200 ℃, and 300 ℃ under vacuum. The FTO/PbS cathode electrode was therefore calcined at 150 ℃ with a maximum efficiency of 3.938%. This happens as a result of the complete fusion of PbS nanoparticles with crystal at 150 ℃, which reduces resistance and increases electron lifetime compared to other temperature combinations.
期刊介绍:
AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.