粉煤灰、硅灰和纳米二氧化硅与普通硅酸盐水泥复配混凝土的力学性能和脆性

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
G. Golewski
{"title":"粉煤灰、硅灰和纳米二氧化硅与普通硅酸盐水泥复配混凝土的力学性能和脆性","authors":"G. Golewski","doi":"10.3934/matersci.2023021","DOIUrl":null,"url":null,"abstract":"This paper introduced a new concrete composites made by quaternary binder by partially replacing ordinary Portland cement (OPC) with different percentages of supplementary cementitious materials (SCMs). The motivation is to reduce our dependency on OPC to reduce CO2 emission and carbon foot print. As the main substitute for the OPC, siliceous fly ash was used (FA). Moreover, silica fume (SF) and nanosilica (nS) were also used. This study utilized the following contents of SCMs used: 5% of nS; 10% of SF; 0, 15, and 25% of FA. During examinations the main mechanical properties of concrete composites, i.e. compressive strength (fcm) and splitting tensile strength (fctm) were assed. The brittleness of these materials was also analysed. Based on the conducted studies, it was found that concrete composite based on quaternary blended cements, of series Mix3, has shown the best results in terms of good strength parameters, whereas the worst mechanical parameters were characterized by concrete of series Mix4. On the other hand, concrete including only SF and nS (Mix2 series) were characterized by the greatest brittleness. It was observed that fcm of concrete composites for series Mix2, Mix3, and Mix4 increase of 41%, 48%, and 31% respectively compared with the concrete without additives, i.e. series Mix1. In addition, fctm also increase of 39%, 47%, and 30%, respectively, for the three series mentioned above, compared with the control concrete. Concrete of series Mix3, with high mechanical properties and demonstrating the features of quasi-plastic material, i.e. having lower brittleness, can be used in concrete and reinforced concrete structures subjected mainly to dynamic and cyclic loads. Therefore, it can be used, in the construction of foundation structures for machines and other types of structures in which the above-mentioned loads are dominant.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Mechanical properties and brittleness of concrete made by combined fly ash, silica fume and nanosilica with ordinary Portland cement\",\"authors\":\"G. Golewski\",\"doi\":\"10.3934/matersci.2023021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduced a new concrete composites made by quaternary binder by partially replacing ordinary Portland cement (OPC) with different percentages of supplementary cementitious materials (SCMs). The motivation is to reduce our dependency on OPC to reduce CO2 emission and carbon foot print. As the main substitute for the OPC, siliceous fly ash was used (FA). Moreover, silica fume (SF) and nanosilica (nS) were also used. This study utilized the following contents of SCMs used: 5% of nS; 10% of SF; 0, 15, and 25% of FA. During examinations the main mechanical properties of concrete composites, i.e. compressive strength (fcm) and splitting tensile strength (fctm) were assed. The brittleness of these materials was also analysed. Based on the conducted studies, it was found that concrete composite based on quaternary blended cements, of series Mix3, has shown the best results in terms of good strength parameters, whereas the worst mechanical parameters were characterized by concrete of series Mix4. On the other hand, concrete including only SF and nS (Mix2 series) were characterized by the greatest brittleness. It was observed that fcm of concrete composites for series Mix2, Mix3, and Mix4 increase of 41%, 48%, and 31% respectively compared with the concrete without additives, i.e. series Mix1. In addition, fctm also increase of 39%, 47%, and 30%, respectively, for the three series mentioned above, compared with the control concrete. Concrete of series Mix3, with high mechanical properties and demonstrating the features of quasi-plastic material, i.e. having lower brittleness, can be used in concrete and reinforced concrete structures subjected mainly to dynamic and cyclic loads. Therefore, it can be used, in the construction of foundation structures for machines and other types of structures in which the above-mentioned loads are dominant.\",\"PeriodicalId\":7670,\"journal\":{\"name\":\"AIMS Materials Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/matersci.2023021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2023021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 22

摘要

介绍了用不同掺量的补充胶凝材料(SCMs)部分替代普通硅酸盐水泥(OPC)制成的新型四元粘结剂混凝土复合材料。其动机是减少我们对OPC的依赖,以减少二氧化碳排放和碳足迹。采用硅质粉煤灰(FA)作为OPC的主要替代品。此外,还使用了硅粉(SF)和纳米二氧化硅(nS)。本研究使用的SCMs的含量如下:5%的nS;顺丰10%;0,15和25%的FA。在试验过程中,通过了混凝土复合材料的主要力学性能,即抗压强度(fcm)和劈裂抗拉强度(fctm)。对这些材料的脆性进行了分析。通过研究发现,以Mix3系列四组分水泥为基础的混凝土复合材料在强度参数上表现最好,而力学参数最差的是Mix4系列混凝土。另一方面,仅含有SF和nS (Mix2系列)的混凝土脆性最大。结果表明,Mix2、Mix3和Mix4系列混凝土复合材料的fcm比未添加添加剂的Mix1系列混凝土分别提高了41%、48%和31%。此外,与对照混凝土相比,上述三个系列的fctm也分别增加了39%、47%和30%。Mix3系列混凝土具有较高的力学性能,表现出准塑性材料的特点,即脆性较低,可用于主要受动力和循环荷载作用的混凝土和钢筋混凝土结构。因此,它可以用于机械基础结构和其他类型的结构,其中上述荷载占主导地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical properties and brittleness of concrete made by combined fly ash, silica fume and nanosilica with ordinary Portland cement
This paper introduced a new concrete composites made by quaternary binder by partially replacing ordinary Portland cement (OPC) with different percentages of supplementary cementitious materials (SCMs). The motivation is to reduce our dependency on OPC to reduce CO2 emission and carbon foot print. As the main substitute for the OPC, siliceous fly ash was used (FA). Moreover, silica fume (SF) and nanosilica (nS) were also used. This study utilized the following contents of SCMs used: 5% of nS; 10% of SF; 0, 15, and 25% of FA. During examinations the main mechanical properties of concrete composites, i.e. compressive strength (fcm) and splitting tensile strength (fctm) were assed. The brittleness of these materials was also analysed. Based on the conducted studies, it was found that concrete composite based on quaternary blended cements, of series Mix3, has shown the best results in terms of good strength parameters, whereas the worst mechanical parameters were characterized by concrete of series Mix4. On the other hand, concrete including only SF and nS (Mix2 series) were characterized by the greatest brittleness. It was observed that fcm of concrete composites for series Mix2, Mix3, and Mix4 increase of 41%, 48%, and 31% respectively compared with the concrete without additives, i.e. series Mix1. In addition, fctm also increase of 39%, 47%, and 30%, respectively, for the three series mentioned above, compared with the control concrete. Concrete of series Mix3, with high mechanical properties and demonstrating the features of quasi-plastic material, i.e. having lower brittleness, can be used in concrete and reinforced concrete structures subjected mainly to dynamic and cyclic loads. Therefore, it can be used, in the construction of foundation structures for machines and other types of structures in which the above-mentioned loads are dominant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Materials Science
AIMS Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
4 weeks
期刊介绍: AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信