混合琼脂糖凝胶骨替代物

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
R. Tilkin, A. P. Monteiro, J. Mahy, Jérôme Hurlet, Nicolas Régibeau, C. Grandfils, S. Lambert
{"title":"混合琼脂糖凝胶骨替代物","authors":"R. Tilkin, A. P. Monteiro, J. Mahy, Jérôme Hurlet, Nicolas Régibeau, C. Grandfils, S. Lambert","doi":"10.3934/matersci.2022025","DOIUrl":null,"url":null,"abstract":"Over the last decades, different materials have been investigated to overcome some flaws of bone substitutes. Even though various materials have been proposed for this conception, the in vivo assessments have still highlighted a lack of bioactivity and integration. In this context, this work focuses on the development of hybrid gel with surface properties specifically designed to promote bone regeneration by a sustained local delivery of active agents. We propose a new approach using modified-silica with high specific surface area and superior hydrophilicity dispersed in agarose hydrogel. In this optic, silica particles were dispersed in agarose solutions before the gelation of the composite upon cooling. The dispersion of the silica particles in the agarose gel was determined via scanning electronic microscopy. The degradation of the silica/agarose gels was also studied over a period of 12 weeks. Finally, the influence of the addition of silica on the permeability of the agarose gel was assessed via a diffusion test. The results showed that modified-silica particles exhibit a wide size distribution (500 nm and 10 µm) and can form clusters with higher size after their dispersion in agarose (up to 100 µm). The hybrid gel was stable over 12 weeks in aqueous solution. Moreover, no difference in permeability was noted between the hybrid gel and agarose hydrogel, allowing molecules up to 3 nm in diameter to diffuse freely within 1 mm thick agarose gels in less than 24 h. The present results indicate that hybrid agarose gel could represent an attractive matrix to disperse silica for scaffold applications.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid agarose gel for bone substitutes\",\"authors\":\"R. Tilkin, A. P. Monteiro, J. Mahy, Jérôme Hurlet, Nicolas Régibeau, C. Grandfils, S. Lambert\",\"doi\":\"10.3934/matersci.2022025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last decades, different materials have been investigated to overcome some flaws of bone substitutes. Even though various materials have been proposed for this conception, the in vivo assessments have still highlighted a lack of bioactivity and integration. In this context, this work focuses on the development of hybrid gel with surface properties specifically designed to promote bone regeneration by a sustained local delivery of active agents. We propose a new approach using modified-silica with high specific surface area and superior hydrophilicity dispersed in agarose hydrogel. In this optic, silica particles were dispersed in agarose solutions before the gelation of the composite upon cooling. The dispersion of the silica particles in the agarose gel was determined via scanning electronic microscopy. The degradation of the silica/agarose gels was also studied over a period of 12 weeks. Finally, the influence of the addition of silica on the permeability of the agarose gel was assessed via a diffusion test. The results showed that modified-silica particles exhibit a wide size distribution (500 nm and 10 µm) and can form clusters with higher size after their dispersion in agarose (up to 100 µm). The hybrid gel was stable over 12 weeks in aqueous solution. Moreover, no difference in permeability was noted between the hybrid gel and agarose hydrogel, allowing molecules up to 3 nm in diameter to diffuse freely within 1 mm thick agarose gels in less than 24 h. The present results indicate that hybrid agarose gel could represent an attractive matrix to disperse silica for scaffold applications.\",\"PeriodicalId\":7670,\"journal\":{\"name\":\"AIMS Materials Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/matersci.2022025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2022025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,人们研究了不同的材料来克服骨替代物的一些缺陷。尽管已经提出了各种材料,但体内评估仍然强调缺乏生物活性和整合。在这种情况下,这项工作的重点是开发具有表面特性的混合凝胶,专门设计用于通过持续的局部递送活性剂来促进骨再生。我们提出了一种新的方法,将具有高比表面积和优异亲水性的改性二氧化硅分散在琼脂糖水凝胶中。在此光学中,二氧化硅颗粒在冷却后复合材料凝胶化之前分散在琼脂糖溶液中。通过扫描电子显微镜测定了二氧化硅颗粒在琼脂糖凝胶中的分散情况。对二氧化硅/琼脂糖凝胶的降解也进行了为期12周的研究。最后,通过扩散试验考察了二氧化硅的加入对琼脂糖凝胶渗透性的影响。结果表明,改性后的二氧化硅颗粒具有较宽的粒径分布(500 nm和10µm),在琼脂糖中分散(100µm)后可形成较大粒径的团簇。混合凝胶在水溶液中稳定12周以上。此外,混合凝胶和琼脂糖水凝胶之间的渗透性没有差异,允许直径达3nm的分子在1mm厚的琼脂糖凝胶中在不到24小时内自由扩散。目前的结果表明,混合琼脂糖凝胶可以作为一种有吸引力的基质来分散用于支架应用的二氧化硅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid agarose gel for bone substitutes
Over the last decades, different materials have been investigated to overcome some flaws of bone substitutes. Even though various materials have been proposed for this conception, the in vivo assessments have still highlighted a lack of bioactivity and integration. In this context, this work focuses on the development of hybrid gel with surface properties specifically designed to promote bone regeneration by a sustained local delivery of active agents. We propose a new approach using modified-silica with high specific surface area and superior hydrophilicity dispersed in agarose hydrogel. In this optic, silica particles were dispersed in agarose solutions before the gelation of the composite upon cooling. The dispersion of the silica particles in the agarose gel was determined via scanning electronic microscopy. The degradation of the silica/agarose gels was also studied over a period of 12 weeks. Finally, the influence of the addition of silica on the permeability of the agarose gel was assessed via a diffusion test. The results showed that modified-silica particles exhibit a wide size distribution (500 nm and 10 µm) and can form clusters with higher size after their dispersion in agarose (up to 100 µm). The hybrid gel was stable over 12 weeks in aqueous solution. Moreover, no difference in permeability was noted between the hybrid gel and agarose hydrogel, allowing molecules up to 3 nm in diameter to diffuse freely within 1 mm thick agarose gels in less than 24 h. The present results indicate that hybrid agarose gel could represent an attractive matrix to disperse silica for scaffold applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Materials Science
AIMS Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
4 weeks
期刊介绍: AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信