不同成分的甘油基电解质对未密封DSSCs的长期研究

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Katrin Gossen, Marius Dotter, Bennet Brockhagen, J. L. Storck, A. Ehrmann
{"title":"不同成分的甘油基电解质对未密封DSSCs的长期研究","authors":"Katrin Gossen, Marius Dotter, Bennet Brockhagen, J. L. Storck, A. Ehrmann","doi":"10.3934/matersci.2022017","DOIUrl":null,"url":null,"abstract":"Long-term stability belongs to the main problems of dye-sensitized solar cells (DSSCs), impeding their practical application. Especially the usually fluid electrolyte tends to evaporation, thus drying the cells if they are not perfectly sealed. While gelling the electrolyte with different polymers often reduces the efficiency, using a glycerol-based electrolyte was already shown to result in similar or even improved efficiency. At the same time, drying of the cells was significantly reduced. Here we report on improving glycerol-based electrolytes further by varying the iodine-triiodide ratio and the overall concentration in the electrolyte. Long-term tests with unsealed glass-based DSSCs were performed over more than 1 year, showing that most of the cells increased efficiency during this time, opposite to cells with a commercial solvent-based iodine-triiodide electrolyte which completely dried after 2–3 months.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Long-term investigation of unsealed DSSCs with glycerol-based electrolytes of different compositions\",\"authors\":\"Katrin Gossen, Marius Dotter, Bennet Brockhagen, J. L. Storck, A. Ehrmann\",\"doi\":\"10.3934/matersci.2022017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long-term stability belongs to the main problems of dye-sensitized solar cells (DSSCs), impeding their practical application. Especially the usually fluid electrolyte tends to evaporation, thus drying the cells if they are not perfectly sealed. While gelling the electrolyte with different polymers often reduces the efficiency, using a glycerol-based electrolyte was already shown to result in similar or even improved efficiency. At the same time, drying of the cells was significantly reduced. Here we report on improving glycerol-based electrolytes further by varying the iodine-triiodide ratio and the overall concentration in the electrolyte. Long-term tests with unsealed glass-based DSSCs were performed over more than 1 year, showing that most of the cells increased efficiency during this time, opposite to cells with a commercial solvent-based iodine-triiodide electrolyte which completely dried after 2–3 months.\",\"PeriodicalId\":7670,\"journal\":{\"name\":\"AIMS Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/matersci.2022017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2022017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

染料敏化太阳能电池的长期稳定性是制约其实际应用的主要问题。特别是通常液体电解质容易蒸发,因此,如果电池没有完全密封,电池就会变干。虽然用不同的聚合物凝胶化电解质通常会降低效率,但使用甘油基电解质已经证明可以产生相似甚至更高的效率。同时,细胞的干燥程度显著降低。在这里,我们报告了通过改变碘与三碘化物的比例和电解质的总浓度来进一步改善甘油基电解质。使用未密封的玻璃基DSSCs进行了超过1年的长期测试,结果表明,在此期间,大多数电池的效率都有所提高,而使用商业溶剂基碘-三碘化电解质的电池则在2-3个月后完全干燥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-term investigation of unsealed DSSCs with glycerol-based electrolytes of different compositions
Long-term stability belongs to the main problems of dye-sensitized solar cells (DSSCs), impeding their practical application. Especially the usually fluid electrolyte tends to evaporation, thus drying the cells if they are not perfectly sealed. While gelling the electrolyte with different polymers often reduces the efficiency, using a glycerol-based electrolyte was already shown to result in similar or even improved efficiency. At the same time, drying of the cells was significantly reduced. Here we report on improving glycerol-based electrolytes further by varying the iodine-triiodide ratio and the overall concentration in the electrolyte. Long-term tests with unsealed glass-based DSSCs were performed over more than 1 year, showing that most of the cells increased efficiency during this time, opposite to cells with a commercial solvent-based iodine-triiodide electrolyte which completely dried after 2–3 months.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Materials Science
AIMS Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
4 weeks
期刊介绍: AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信