基于多域特征增强随机森林的三轴控制卫星反作用轮故障隔离

IF 1.4 Q2 ENGINEERING, MULTIDISCIPLINARY
Afshin Rahimi, Mofiyinoluwa O. Folami
{"title":"基于多域特征增强随机森林的三轴控制卫星反作用轮故障隔离","authors":"Afshin Rahimi, Mofiyinoluwa O. Folami","doi":"10.36001/ijphm.2021.v12i2.3078","DOIUrl":null,"url":null,"abstract":"As the number of satellite launches increases each year, it is only natural that an interest in the safety and monitoring of these systems would increase as well. However, as a system becomes more complex, generating a high-fidelity model that accurately describes the system becomes complicated. Therefore, imploring a data-driven method can provide to be more beneficial for such applications. This research proposes a novel approach for data-driven machine learning techniques on the detection and isolation of nonlinear systems, with a case-study for an in-orbit closed loop-controlled satellite with reaction wheels as actuators. High-fidelity models of the 3-axis controlled satellite are employed to generate data for both nominal and faulty conditions of the reaction wheels. The generated simulation data is used as input for the isolation method, after which the data is pre-processed through feature extraction from a temporal, statistical, and spectral domain. The pre-processed features are then fed into various machine learning classifiers. Isolation results are validated with cross-validation, and model parameters are tuned using hyperparameter optimization. To validate the robustness of the proposed method, it is tested on three characterized datasets and three reaction wheel configurations, including standard four-wheel, three-orthogonal, and pyramid. The results prove superior performance isolation accuracy for the system under study compared to previous studies using alternative methods (Rahimi & Saadat, 2019, 2020).","PeriodicalId":42100,"journal":{"name":"International Journal of Prognostics and Health Management","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reaction Wheels Fault Isolation Onboard 3-Axis Controlled Satel-lite using Enhanced Random Forest with Multidomain Features\",\"authors\":\"Afshin Rahimi, Mofiyinoluwa O. Folami\",\"doi\":\"10.36001/ijphm.2021.v12i2.3078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the number of satellite launches increases each year, it is only natural that an interest in the safety and monitoring of these systems would increase as well. However, as a system becomes more complex, generating a high-fidelity model that accurately describes the system becomes complicated. Therefore, imploring a data-driven method can provide to be more beneficial for such applications. This research proposes a novel approach for data-driven machine learning techniques on the detection and isolation of nonlinear systems, with a case-study for an in-orbit closed loop-controlled satellite with reaction wheels as actuators. High-fidelity models of the 3-axis controlled satellite are employed to generate data for both nominal and faulty conditions of the reaction wheels. The generated simulation data is used as input for the isolation method, after which the data is pre-processed through feature extraction from a temporal, statistical, and spectral domain. The pre-processed features are then fed into various machine learning classifiers. Isolation results are validated with cross-validation, and model parameters are tuned using hyperparameter optimization. To validate the robustness of the proposed method, it is tested on three characterized datasets and three reaction wheel configurations, including standard four-wheel, three-orthogonal, and pyramid. The results prove superior performance isolation accuracy for the system under study compared to previous studies using alternative methods (Rahimi & Saadat, 2019, 2020).\",\"PeriodicalId\":42100,\"journal\":{\"name\":\"International Journal of Prognostics and Health Management\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Prognostics and Health Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/ijphm.2021.v12i2.3078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2021.v12i2.3078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着每年卫星发射数量的增加,对这些系统的安全和监测的兴趣自然也会增加。然而,随着系统变得越来越复杂,生成一个准确描述系统的高保真模型也变得越来越复杂。因此,采用数据驱动的方法可以为这样的应用程序提供更多的好处。本研究提出了一种用于非线性系统检测和隔离的数据驱动机器学习技术的新方法,并以反作用轮作为执行器的在轨闭环控制卫星为例进行了研究。利用三轴控制卫星的高保真模型生成反作用轮正常状态和故障状态的数据。生成的仿真数据用作隔离方法的输入,然后通过从时间域、统计域和谱域提取特征对数据进行预处理。然后将预处理的特征输入到各种机器学习分类器中。通过交叉验证验证隔离结果,并使用超参数优化调整模型参数。为了验证该方法的鲁棒性,在三个特征数据集和三种反应轮构型(包括标准四轮、三正交和金字塔)上进行了测试。结果证明,与之前使用替代方法的研究相比,所研究系统的性能隔离精度更高(Rahimi & Saadat, 2019, 2020)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reaction Wheels Fault Isolation Onboard 3-Axis Controlled Satel-lite using Enhanced Random Forest with Multidomain Features
As the number of satellite launches increases each year, it is only natural that an interest in the safety and monitoring of these systems would increase as well. However, as a system becomes more complex, generating a high-fidelity model that accurately describes the system becomes complicated. Therefore, imploring a data-driven method can provide to be more beneficial for such applications. This research proposes a novel approach for data-driven machine learning techniques on the detection and isolation of nonlinear systems, with a case-study for an in-orbit closed loop-controlled satellite with reaction wheels as actuators. High-fidelity models of the 3-axis controlled satellite are employed to generate data for both nominal and faulty conditions of the reaction wheels. The generated simulation data is used as input for the isolation method, after which the data is pre-processed through feature extraction from a temporal, statistical, and spectral domain. The pre-processed features are then fed into various machine learning classifiers. Isolation results are validated with cross-validation, and model parameters are tuned using hyperparameter optimization. To validate the robustness of the proposed method, it is tested on three characterized datasets and three reaction wheel configurations, including standard four-wheel, three-orthogonal, and pyramid. The results prove superior performance isolation accuracy for the system under study compared to previous studies using alternative methods (Rahimi & Saadat, 2019, 2020).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.50%
发文量
18
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信