基于机器学习的模型燃烧室缺陷检测实验与数值研究

Q4 Engineering
Henrik von der Haar, Panagiotis Ignatidis, F. Dinkelacker
{"title":"基于机器学习的模型燃烧室缺陷检测实验与数值研究","authors":"Henrik von der Haar, Panagiotis Ignatidis, F. Dinkelacker","doi":"10.38036/jgpp.12.4_1","DOIUrl":null,"url":null,"abstract":"A disturbed combustion process in an aircraft engine has an impact on the internal flow and leads to specific irregularities in the species distribution in the exhaust jet. Measuring this distribution provides information about the combustion state and offers the possibility to reduce the engine down-time during inspection. The approach has the potential to improve the resource management as well as the availability and safety of the system. Aim of the research project is to evaluate the state of an aircraft engine by analyzing the emission field in the exhaust jet and using a support vector machine (SVM) algorithm for automatic defect detection and allocation.","PeriodicalId":38948,"journal":{"name":"International Journal of Gas Turbine, Propulsion and Power Systems","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental and Numerical Based Defect Detection in a Model Combustion Chamber through Machine Learning\",\"authors\":\"Henrik von der Haar, Panagiotis Ignatidis, F. Dinkelacker\",\"doi\":\"10.38036/jgpp.12.4_1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A disturbed combustion process in an aircraft engine has an impact on the internal flow and leads to specific irregularities in the species distribution in the exhaust jet. Measuring this distribution provides information about the combustion state and offers the possibility to reduce the engine down-time during inspection. The approach has the potential to improve the resource management as well as the availability and safety of the system. Aim of the research project is to evaluate the state of an aircraft engine by analyzing the emission field in the exhaust jet and using a support vector machine (SVM) algorithm for automatic defect detection and allocation.\",\"PeriodicalId\":38948,\"journal\":{\"name\":\"International Journal of Gas Turbine, Propulsion and Power Systems\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Gas Turbine, Propulsion and Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.38036/jgpp.12.4_1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Gas Turbine, Propulsion and Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38036/jgpp.12.4_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

航空发动机的扰动燃烧过程会对发动机内部流动产生影响,并导致排气射流中物质分布的特殊不规则性。测量这种分布提供了有关燃烧状态的信息,并提供了在检查期间减少发动机停机时间的可能性。该方法具有改进资源管理以及系统可用性和安全性的潜力。本课题的研究目的是通过分析飞机发动机排气射流中的排放场,利用支持向量机(SVM)算法进行缺陷自动检测和分配,从而对发动机的状态进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and Numerical Based Defect Detection in a Model Combustion Chamber through Machine Learning
A disturbed combustion process in an aircraft engine has an impact on the internal flow and leads to specific irregularities in the species distribution in the exhaust jet. Measuring this distribution provides information about the combustion state and offers the possibility to reduce the engine down-time during inspection. The approach has the potential to improve the resource management as well as the availability and safety of the system. Aim of the research project is to evaluate the state of an aircraft engine by analyzing the emission field in the exhaust jet and using a support vector machine (SVM) algorithm for automatic defect detection and allocation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信