Meng Da-di, Huang Yuxin, Shi Tao, Sun Rui, Liang Xiao-bo
{"title":"基于NVIDIA GPU的CUDA机载SAR实时成像算法设计与实现","authors":"Meng Da-di, Huang Yuxin, Shi Tao, Sun Rui, Liang Xiao-bo","doi":"10.3724/SP.J.1300.2013.13056","DOIUrl":null,"url":null,"abstract":"Synthetic Aperture Radar (SAR) image processing requires a considerable amount of computational resources. Traditionally, this task runs on a workstation or a server based on Central Processing Units (CPUs) and is rather time-consuming, making real-time processing of SAR data impossible. Based on Compute Unified Device Architecture (CUDA) technology, a new plan for a SAR imaging algorithm operated on an NVIDIA Graphic Processing Unit (GPU) is proposed. The new proposal makes it possible for the data processing procedure and the CPU/GPU data exchange to execute concurrently, especially when the size of SAR data exceeds the total GPU global memory size. A multi-GPU is suitably supported by the new proposal, and all computational resources are fully exploited. It has been shown by an experiment on an NVIDIA K20C and INTEL E5645 that the proposed solution accelerates SAR data processing by tens of times. Consequently, a GPU based SAR processing system that embeds the proposed solution is much more efficient and portable, thereby making it qualified to be a real-time SAR data processing system. Experiments showed that SAR data can be processed in real-time at a rate of 36 megapixels per second by a K20C when the new solution is implemented.","PeriodicalId":37701,"journal":{"name":"雷达学报","volume":"2 1","pages":"481-491"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Airborne SAR Real-time Imaging Algorithm Design and Implementation with CUDA on NVIDIA GPU\",\"authors\":\"Meng Da-di, Huang Yuxin, Shi Tao, Sun Rui, Liang Xiao-bo\",\"doi\":\"10.3724/SP.J.1300.2013.13056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic Aperture Radar (SAR) image processing requires a considerable amount of computational resources. Traditionally, this task runs on a workstation or a server based on Central Processing Units (CPUs) and is rather time-consuming, making real-time processing of SAR data impossible. Based on Compute Unified Device Architecture (CUDA) technology, a new plan for a SAR imaging algorithm operated on an NVIDIA Graphic Processing Unit (GPU) is proposed. The new proposal makes it possible for the data processing procedure and the CPU/GPU data exchange to execute concurrently, especially when the size of SAR data exceeds the total GPU global memory size. A multi-GPU is suitably supported by the new proposal, and all computational resources are fully exploited. It has been shown by an experiment on an NVIDIA K20C and INTEL E5645 that the proposed solution accelerates SAR data processing by tens of times. Consequently, a GPU based SAR processing system that embeds the proposed solution is much more efficient and portable, thereby making it qualified to be a real-time SAR data processing system. Experiments showed that SAR data can be processed in real-time at a rate of 36 megapixels per second by a K20C when the new solution is implemented.\",\"PeriodicalId\":37701,\"journal\":{\"name\":\"雷达学报\",\"volume\":\"2 1\",\"pages\":\"481-491\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"雷达学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3724/SP.J.1300.2013.13056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"雷达学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/SP.J.1300.2013.13056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Airborne SAR Real-time Imaging Algorithm Design and Implementation with CUDA on NVIDIA GPU
Synthetic Aperture Radar (SAR) image processing requires a considerable amount of computational resources. Traditionally, this task runs on a workstation or a server based on Central Processing Units (CPUs) and is rather time-consuming, making real-time processing of SAR data impossible. Based on Compute Unified Device Architecture (CUDA) technology, a new plan for a SAR imaging algorithm operated on an NVIDIA Graphic Processing Unit (GPU) is proposed. The new proposal makes it possible for the data processing procedure and the CPU/GPU data exchange to execute concurrently, especially when the size of SAR data exceeds the total GPU global memory size. A multi-GPU is suitably supported by the new proposal, and all computational resources are fully exploited. It has been shown by an experiment on an NVIDIA K20C and INTEL E5645 that the proposed solution accelerates SAR data processing by tens of times. Consequently, a GPU based SAR processing system that embeds the proposed solution is much more efficient and portable, thereby making it qualified to be a real-time SAR data processing system. Experiments showed that SAR data can be processed in real-time at a rate of 36 megapixels per second by a K20C when the new solution is implemented.
期刊介绍:
Journal of Radars was founded in 2012 by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (formerly the Institute of Electronics) and the China Radar Industry Association (CRIA), which is located in the high-end academic journal and academic exchange platform in the field of radar, and is committed to promoting and leading the scientific and technological development in the field of radar. The journal can publish Chinese papers and English papers, and is now a bimonthly journal.
Journal of Radars focuses on theory, originality and foresight, and its scope of coverage mainly includes: radar theory and system, radar signal and data processing technology, radar imaging technology, radar identification and application technology.
Journal of Radars has been included in domestic core journals and foreign Scopus, Ei and other databases, and was selected as ‘China's high-quality science and technology journals’, and ranked the first in the category of electronic technology and communication technology in the ‘Chinese Core Journals List (2023 Edition)’.