预防反馈PCNN模型及其在组合优化问题中的应用

Q4 Engineering
Rongchang Zhao, K. Zhan, Xiao-jun Li, Yide Ma, Xiaowen Feng
{"title":"预防反馈PCNN模型及其在组合优化问题中的应用","authors":"Rongchang Zhao, K. Zhan, Xiao-jun Li, Yide Ma, Xiaowen Feng","doi":"10.3969/J.ISSN.1001-0548.2013.05.018","DOIUrl":null,"url":null,"abstract":"An improved pulse coupled neural network(PCNN) model is proposed to solve combination optimization problem with help of PCNN auto-wave characteristic.Based on Tri-state cascading pulse coupled neural network(TCPCNN),a preventive feedback method by using the triangle inequality theorem is introduced.In the process of searching solutions,all solutions are judged by the triangle inequality theorem and solutions of poor quality are removed.Therefore,the solution space complexity of combinatorial optimization problems decreases and the efficiency and accuracy are improved.This algorithm is applied to the shor test path(SP) and the traveling salesman problem(TSP) simulations.The results show that the proposed algorithm can effectively reduce space complexity and further improve the searching speed.","PeriodicalId":35864,"journal":{"name":"电子科技大学学报","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preventive Feedback PCNN Model and Its Application in the Combinatorial Optimization Problems\",\"authors\":\"Rongchang Zhao, K. Zhan, Xiao-jun Li, Yide Ma, Xiaowen Feng\",\"doi\":\"10.3969/J.ISSN.1001-0548.2013.05.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved pulse coupled neural network(PCNN) model is proposed to solve combination optimization problem with help of PCNN auto-wave characteristic.Based on Tri-state cascading pulse coupled neural network(TCPCNN),a preventive feedback method by using the triangle inequality theorem is introduced.In the process of searching solutions,all solutions are judged by the triangle inequality theorem and solutions of poor quality are removed.Therefore,the solution space complexity of combinatorial optimization problems decreases and the efficiency and accuracy are improved.This algorithm is applied to the shor test path(SP) and the traveling salesman problem(TSP) simulations.The results show that the proposed algorithm can effectively reduce space complexity and further improve the searching speed.\",\"PeriodicalId\":35864,\"journal\":{\"name\":\"电子科技大学学报\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电子科技大学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3969/J.ISSN.1001-0548.2013.05.018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电子科技大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3969/J.ISSN.1001-0548.2013.05.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

利用脉冲耦合神经网络(PCNN)的自波特性,提出了一种改进的脉冲耦合神经网络(PCNN)模型来解决组合优化问题。在三态级联脉冲耦合神经网络(TCPCNN)的基础上,提出了一种利用三角不等式定理的预防反馈方法。在搜索解的过程中,根据三角不等式定理对所有解进行判断,剔除质量较差的解。从而降低了组合优化问题的解空间复杂度,提高了组合优化的效率和精度。该算法应用于短测试路径(SP)和旅行商问题(TSP)的仿真。结果表明,该算法能有效降低空间复杂度,进一步提高搜索速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preventive Feedback PCNN Model and Its Application in the Combinatorial Optimization Problems
An improved pulse coupled neural network(PCNN) model is proposed to solve combination optimization problem with help of PCNN auto-wave characteristic.Based on Tri-state cascading pulse coupled neural network(TCPCNN),a preventive feedback method by using the triangle inequality theorem is introduced.In the process of searching solutions,all solutions are judged by the triangle inequality theorem and solutions of poor quality are removed.Therefore,the solution space complexity of combinatorial optimization problems decreases and the efficiency and accuracy are improved.This algorithm is applied to the shor test path(SP) and the traveling salesman problem(TSP) simulations.The results show that the proposed algorithm can effectively reduce space complexity and further improve the searching speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
电子科技大学学报
电子科技大学学报 Engineering-Electrical and Electronic Engineering
CiteScore
1.40
自引率
0.00%
发文量
7228
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信