差异灰色预测方法在乐活屋销售中的应用

IF 1 4区 工程技术 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Mei-Lien Kan, Kuei-Feng Lee, Yuan-Bing Lee
{"title":"差异灰色预测方法在乐活屋销售中的应用","authors":"Mei-Lien Kan, Kuei-Feng Lee, Yuan-Bing Lee","doi":"10.30016/JGS.201206.0007","DOIUrl":null,"url":null,"abstract":"The paper brings together the average daily sales of a Farmers' Association supermarket from May, 2010 to December, 2010. First, we examine whether the data meet the conditions of modeling, and we determine the average amount of daily sales data are in line with the GM (1,1) modeling of the capacity district. Also, it meets the conditions of the modeling prediction accuracy higher than 90%. Due to the traditional grey prediction GM (1,1) model only needs 4 data, but residual modification grey prediction GM (1,1) mode needs at least five data. Hence, the GM (1,1) model uses the raw data from May, 2010 to November, 2010 to predict values in December, 2010 to do error analysis. Also, we apply the GM (1,1) rolling test, and use the data of 5 groups, 6 groups and 7 groups to calculate six kinds of GM (1,1) prediction model, and we find the raw data with minimum error as the grey prediction GM (1,1) model. After determining the optimal grey prediction period, we apply six grey prediction methods and the optimal grey prediction period to predict the values of December, 2010 to do error analysis. We also use average error value as a criteria to select the best prediction model, and by using the top four of the best prediction model, we are able to predict next three months' growth trend.","PeriodicalId":50187,"journal":{"name":"Journal of Grey System","volume":"15 1","pages":"111-117"},"PeriodicalIF":1.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apply Differences Grey Prediction Methods in the Selling of LOHAS\",\"authors\":\"Mei-Lien Kan, Kuei-Feng Lee, Yuan-Bing Lee\",\"doi\":\"10.30016/JGS.201206.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper brings together the average daily sales of a Farmers' Association supermarket from May, 2010 to December, 2010. First, we examine whether the data meet the conditions of modeling, and we determine the average amount of daily sales data are in line with the GM (1,1) modeling of the capacity district. Also, it meets the conditions of the modeling prediction accuracy higher than 90%. Due to the traditional grey prediction GM (1,1) model only needs 4 data, but residual modification grey prediction GM (1,1) mode needs at least five data. Hence, the GM (1,1) model uses the raw data from May, 2010 to November, 2010 to predict values in December, 2010 to do error analysis. Also, we apply the GM (1,1) rolling test, and use the data of 5 groups, 6 groups and 7 groups to calculate six kinds of GM (1,1) prediction model, and we find the raw data with minimum error as the grey prediction GM (1,1) model. After determining the optimal grey prediction period, we apply six grey prediction methods and the optimal grey prediction period to predict the values of December, 2010 to do error analysis. We also use average error value as a criteria to select the best prediction model, and by using the top four of the best prediction model, we are able to predict next three months' growth trend.\",\"PeriodicalId\":50187,\"journal\":{\"name\":\"Journal of Grey System\",\"volume\":\"15 1\",\"pages\":\"111-117\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Grey System\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30016/JGS.201206.0007\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grey System","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30016/JGS.201206.0007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文收集了某农协超市2010年5月至2010年12月的日均销售额。首先检验数据是否满足建模条件,确定日均销量数据是否符合容量区的GM(1,1)模型。同时满足建模预测精度高于90%的条件。由于传统的灰色预测GM(1,1)模型只需要4个数据,而残差修正灰色预测GM(1,1)模式至少需要5个数据。因此,GM(1,1)模型使用2010年5月至11月的原始数据预测2010年12月的值进行误差分析。同时,应用GM(1,1)滚动检验,利用5组、6组和7组的数据计算出6种GM(1,1)预测模型,找到误差最小的原始数据作为灰色预测GM(1,1)模型。在确定最优灰色预测期后,应用6种灰色预测方法和最优灰色预测期对2010年12月的数值进行预测,并进行误差分析。我们还以平均误差值作为标准来选择最佳预测模型,通过使用最佳预测模型的前四名,我们可以预测未来三个月的增长趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Apply Differences Grey Prediction Methods in the Selling of LOHAS
The paper brings together the average daily sales of a Farmers' Association supermarket from May, 2010 to December, 2010. First, we examine whether the data meet the conditions of modeling, and we determine the average amount of daily sales data are in line with the GM (1,1) modeling of the capacity district. Also, it meets the conditions of the modeling prediction accuracy higher than 90%. Due to the traditional grey prediction GM (1,1) model only needs 4 data, but residual modification grey prediction GM (1,1) mode needs at least five data. Hence, the GM (1,1) model uses the raw data from May, 2010 to November, 2010 to predict values in December, 2010 to do error analysis. Also, we apply the GM (1,1) rolling test, and use the data of 5 groups, 6 groups and 7 groups to calculate six kinds of GM (1,1) prediction model, and we find the raw data with minimum error as the grey prediction GM (1,1) model. After determining the optimal grey prediction period, we apply six grey prediction methods and the optimal grey prediction period to predict the values of December, 2010 to do error analysis. We also use average error value as a criteria to select the best prediction model, and by using the top four of the best prediction model, we are able to predict next three months' growth trend.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Grey System
Journal of Grey System 数学-数学跨学科应用
CiteScore
2.40
自引率
43.80%
发文量
0
审稿时长
1.5 months
期刊介绍: The journal is a forum of the highest professional quality for both scientists and practitioners to exchange ideas and publish new discoveries on a vast array of topics and issues in grey system. It aims to bring forth anything from either innovative to known theories or practical applications in grey system. It provides everyone opportunities to present, criticize, and discuss their findings and ideas with others. A number of areas of particular interest (but not limited) are listed as follows: Grey mathematics- Generator of Grey Sequences- Grey Incidence Analysis Models- Grey Clustering Evaluation Models- Grey Prediction Models- Grey Decision Making Models- Grey Programming Models- Grey Input and Output Models- Grey Control- Grey Game- Practical Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信