基于gmm的马格里布方言识别系统

IF 0.8 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lachachi Nour-Eddine, Adla Abdelkader
{"title":"基于gmm的马格里布方言识别系统","authors":"Lachachi Nour-Eddine, Adla Abdelkader","doi":"10.3745/JIPS.02.0015","DOIUrl":null,"url":null,"abstract":"While Modern Standard Arabic is the formal spoken and written language of the Arab world; dialects are the major communication mode for everyday life. Therefore, identifying a speaker`s dialect is critical in the Arabic-speaking world for speech processing tasks, such as automatic speech recognition or identification. In this paper, we examine two approaches that reduce the Universal Background Model (UBM) in the automatic dialect identification system across the five following Arabic Maghreb dialects: Moroccan, Tunisian, and 3 dialects of the western (Oranian), central (Algiersian), and eastern (Constantinian) regions of Algeria. We applied our approaches to the Maghreb dialect detection domain that contains a collection of 10-second utterances and we compared the performance precision gained against the dialect samples from a baseline GMM-UBM system and the ones from our own improved GMM-UBM system that uses a Reduced UBM algorithm. Our experiments show that our approaches significantly improve identification performance over purely acoustic features with an identification rate of 80.49%.","PeriodicalId":46825,"journal":{"name":"Journal of Information Processing Systems","volume":"1 1","pages":"22-38"},"PeriodicalIF":0.8000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"GMM-Based Maghreb Dialect IdentificationSystem\",\"authors\":\"Lachachi Nour-Eddine, Adla Abdelkader\",\"doi\":\"10.3745/JIPS.02.0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While Modern Standard Arabic is the formal spoken and written language of the Arab world; dialects are the major communication mode for everyday life. Therefore, identifying a speaker`s dialect is critical in the Arabic-speaking world for speech processing tasks, such as automatic speech recognition or identification. In this paper, we examine two approaches that reduce the Universal Background Model (UBM) in the automatic dialect identification system across the five following Arabic Maghreb dialects: Moroccan, Tunisian, and 3 dialects of the western (Oranian), central (Algiersian), and eastern (Constantinian) regions of Algeria. We applied our approaches to the Maghreb dialect detection domain that contains a collection of 10-second utterances and we compared the performance precision gained against the dialect samples from a baseline GMM-UBM system and the ones from our own improved GMM-UBM system that uses a Reduced UBM algorithm. Our experiments show that our approaches significantly improve identification performance over purely acoustic features with an identification rate of 80.49%.\",\"PeriodicalId\":46825,\"journal\":{\"name\":\"Journal of Information Processing Systems\",\"volume\":\"1 1\",\"pages\":\"22-38\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Processing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3745/JIPS.02.0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/JIPS.02.0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 9

摘要

现代标准阿拉伯语是阿拉伯世界的正式口语和书面语;方言是日常生活中主要的交流方式。因此,在阿拉伯语世界中,识别说话人的方言对于语音处理任务至关重要,例如自动语音识别或识别。在本文中,我们研究了在自动方言识别系统中减少通用背景模型(UBM)的两种方法,这些方法适用于以下五种阿拉伯马格里布方言:摩洛哥语、突尼斯语和阿尔及利亚西部(奥拉尼亚语)、中部(阿尔及利亚语)和东部(君士坦丁尼亚语)地区的3种方言。我们将我们的方法应用于马格里布方言检测领域,该领域包含一个10秒的话语集合,我们将从基线GMM-UBM系统和我们自己的改进GMM-UBM系统中获得的方言样本的性能精度进行了比较,该系统使用了简化的UBM算法。实验表明,我们的方法显著提高了纯声学特征的识别性能,识别率达到80.49%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GMM-Based Maghreb Dialect IdentificationSystem
While Modern Standard Arabic is the formal spoken and written language of the Arab world; dialects are the major communication mode for everyday life. Therefore, identifying a speaker`s dialect is critical in the Arabic-speaking world for speech processing tasks, such as automatic speech recognition or identification. In this paper, we examine two approaches that reduce the Universal Background Model (UBM) in the automatic dialect identification system across the five following Arabic Maghreb dialects: Moroccan, Tunisian, and 3 dialects of the western (Oranian), central (Algiersian), and eastern (Constantinian) regions of Algeria. We applied our approaches to the Maghreb dialect detection domain that contains a collection of 10-second utterances and we compared the performance precision gained against the dialect samples from a baseline GMM-UBM system and the ones from our own improved GMM-UBM system that uses a Reduced UBM algorithm. Our experiments show that our approaches significantly improve identification performance over purely acoustic features with an identification rate of 80.49%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Information Processing Systems
Journal of Information Processing Systems COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.00
自引率
6.20%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信