财务危机预测问题的GreyART网络

IF 1 4区 工程技术 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
M. Yeh, Haoxun Yang, Chia-Ting Chang
{"title":"财务危机预测问题的GreyART网络","authors":"M. Yeh, Haoxun Yang, Chia-Ting Chang","doi":"10.30016/JGS.200606.0006","DOIUrl":null,"url":null,"abstract":"This study attempts to use the GreyART network to construct a financial distress prediction model. The inputs applied to the network are the historical data containing 18 different financial ratios of 54 healthy and 22 distressed Taiwan's listed electronic firms. In order to determine the best result the GreyART network can attain, a new performance index is developed. Simulation results show the one using 8 variables to generate only four clusters, 1 for healthy class and 3 for distressed class with corresponding classification hit rates of 94.12% and 93.55% for the training and test phases, respectively.","PeriodicalId":50187,"journal":{"name":"Journal of Grey System","volume":"9 1","pages":"43-49"},"PeriodicalIF":1.0000,"publicationDate":"2006-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GreyART Network for Financial Distress Prediction Problem\",\"authors\":\"M. Yeh, Haoxun Yang, Chia-Ting Chang\",\"doi\":\"10.30016/JGS.200606.0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study attempts to use the GreyART network to construct a financial distress prediction model. The inputs applied to the network are the historical data containing 18 different financial ratios of 54 healthy and 22 distressed Taiwan's listed electronic firms. In order to determine the best result the GreyART network can attain, a new performance index is developed. Simulation results show the one using 8 variables to generate only four clusters, 1 for healthy class and 3 for distressed class with corresponding classification hit rates of 94.12% and 93.55% for the training and test phases, respectively.\",\"PeriodicalId\":50187,\"journal\":{\"name\":\"Journal of Grey System\",\"volume\":\"9 1\",\"pages\":\"43-49\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2006-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Grey System\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30016/JGS.200606.0006\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grey System","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30016/JGS.200606.0006","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

本研究尝试使用GreyART网路建构财务困境预测模型。该网络的输入是包含54家健康和22家不良台湾上市电子公司18种不同财务比率的历史数据。为了确定GreyART网络所能达到的最佳效果,提出了一种新的性能指标。仿真结果表明,使用8个变量只生成4个聚类,其中健康类1个,痛苦类3个,训练和测试阶段的分类命中率分别为94.12%和93.55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GreyART Network for Financial Distress Prediction Problem
This study attempts to use the GreyART network to construct a financial distress prediction model. The inputs applied to the network are the historical data containing 18 different financial ratios of 54 healthy and 22 distressed Taiwan's listed electronic firms. In order to determine the best result the GreyART network can attain, a new performance index is developed. Simulation results show the one using 8 variables to generate only four clusters, 1 for healthy class and 3 for distressed class with corresponding classification hit rates of 94.12% and 93.55% for the training and test phases, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Grey System
Journal of Grey System 数学-数学跨学科应用
CiteScore
2.40
自引率
43.80%
发文量
0
审稿时长
1.5 months
期刊介绍: The journal is a forum of the highest professional quality for both scientists and practitioners to exchange ideas and publish new discoveries on a vast array of topics and issues in grey system. It aims to bring forth anything from either innovative to known theories or practical applications in grey system. It provides everyone opportunities to present, criticize, and discuss their findings and ideas with others. A number of areas of particular interest (but not limited) are listed as follows: Grey mathematics- Generator of Grey Sequences- Grey Incidence Analysis Models- Grey Clustering Evaluation Models- Grey Prediction Models- Grey Decision Making Models- Grey Programming Models- Grey Input and Output Models- Grey Control- Grey Game- Practical Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信