基于神经网络的动态图像序列运动矢量估计算法

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY
Yongjian Zhang
{"title":"基于神经网络的动态图像序列运动矢量估计算法","authors":"Yongjian Zhang","doi":"10.3233/jcm-226848","DOIUrl":null,"url":null,"abstract":"With the rapid development of deep learning, convolutional neural networks have gradually become the main means to extract features of dynamic image sequences. The motion vector estimation algorithm, as the key to the stability of image sequences, directly affects the performance of image stabilization systems, so the motion estimation algorithm for convolutional neural networks is necessary. The study proposes an improved convolutional neural network based on loss-free function, and applies it to the extraction of dynamic image features. On this basis, the motion estimation algorithm is then optimised by combining grey-scale projection and block matching methods. The experimental results show that the new loss-free function-based convolutional neural network has better recognition capability with an error rate of only 15% in dynamic image recognition. The accuracy of the optimised motion estimation algorithm is as high as 95.1% with a PSNR value of 16.636, which is higher than that of the traditional grey-scale projection algorithm. In terms of video processing, the improved algorithm has a higher PSNR value than the search block matching method, the bit-plane matching method and the full search block matching method, with a higher steady image accuracy and high operational efficiency, providing a new research idea for the improvement of motion estimation algorithms. In general, the proposed algorithm is a significant improvement over the current mainstream algorithms in terms of image accuracy, processing performance and number of operations, and it provides a new research idea for the improvement of motion estimation algorithms.","PeriodicalId":45004,"journal":{"name":"Journal of Computational Methods in Sciences and Engineering","volume":"23 1","pages":"2347-2360"},"PeriodicalIF":0.5000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network-based motion vector estimation algorithm for dynamic image sequences\",\"authors\":\"Yongjian Zhang\",\"doi\":\"10.3233/jcm-226848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of deep learning, convolutional neural networks have gradually become the main means to extract features of dynamic image sequences. The motion vector estimation algorithm, as the key to the stability of image sequences, directly affects the performance of image stabilization systems, so the motion estimation algorithm for convolutional neural networks is necessary. The study proposes an improved convolutional neural network based on loss-free function, and applies it to the extraction of dynamic image features. On this basis, the motion estimation algorithm is then optimised by combining grey-scale projection and block matching methods. The experimental results show that the new loss-free function-based convolutional neural network has better recognition capability with an error rate of only 15% in dynamic image recognition. The accuracy of the optimised motion estimation algorithm is as high as 95.1% with a PSNR value of 16.636, which is higher than that of the traditional grey-scale projection algorithm. In terms of video processing, the improved algorithm has a higher PSNR value than the search block matching method, the bit-plane matching method and the full search block matching method, with a higher steady image accuracy and high operational efficiency, providing a new research idea for the improvement of motion estimation algorithms. In general, the proposed algorithm is a significant improvement over the current mainstream algorithms in terms of image accuracy, processing performance and number of operations, and it provides a new research idea for the improvement of motion estimation algorithms.\",\"PeriodicalId\":45004,\"journal\":{\"name\":\"Journal of Computational Methods in Sciences and Engineering\",\"volume\":\"23 1\",\"pages\":\"2347-2360\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Methods in Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcm-226848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Methods in Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-226848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着深度学习的快速发展,卷积神经网络逐渐成为提取动态图像序列特征的主要手段。运动矢量估计算法作为图像序列稳定性的关键,直接影响到图像稳定系统的性能,因此卷积神经网络的运动估计算法是必要的。提出了一种改进的基于无损函数的卷积神经网络,并将其应用于动态图像特征的提取。在此基础上,结合灰度投影和块匹配方法对运动估计算法进行优化。实验结果表明,新的基于无损失函数的卷积神经网络在动态图像识别中具有较好的识别能力,错误率仅为15%。优化后的运动估计算法准确率高达95.1%,PSNR值为16.636,高于传统的灰度投影算法。在视频处理方面,改进算法比搜索块匹配方法、位平面匹配方法和全搜索块匹配方法具有更高的PSNR值,具有更高的稳定图像精度和较高的运算效率,为运动估计算法的改进提供了新的研究思路。总的来说,本文提出的算法在图像精度、处理性能和运算次数等方面都比目前主流算法有了明显的改进,为运动估计算法的改进提供了新的研究思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network-based motion vector estimation algorithm for dynamic image sequences
With the rapid development of deep learning, convolutional neural networks have gradually become the main means to extract features of dynamic image sequences. The motion vector estimation algorithm, as the key to the stability of image sequences, directly affects the performance of image stabilization systems, so the motion estimation algorithm for convolutional neural networks is necessary. The study proposes an improved convolutional neural network based on loss-free function, and applies it to the extraction of dynamic image features. On this basis, the motion estimation algorithm is then optimised by combining grey-scale projection and block matching methods. The experimental results show that the new loss-free function-based convolutional neural network has better recognition capability with an error rate of only 15% in dynamic image recognition. The accuracy of the optimised motion estimation algorithm is as high as 95.1% with a PSNR value of 16.636, which is higher than that of the traditional grey-scale projection algorithm. In terms of video processing, the improved algorithm has a higher PSNR value than the search block matching method, the bit-plane matching method and the full search block matching method, with a higher steady image accuracy and high operational efficiency, providing a new research idea for the improvement of motion estimation algorithms. In general, the proposed algorithm is a significant improvement over the current mainstream algorithms in terms of image accuracy, processing performance and number of operations, and it provides a new research idea for the improvement of motion estimation algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
152
期刊介绍: The major goal of the Journal of Computational Methods in Sciences and Engineering (JCMSE) is the publication of new research results on computational methods in sciences and engineering. Common experience had taught us that computational methods originally developed in a given basic science, e.g. physics, can be of paramount importance to other neighboring sciences, e.g. chemistry, as well as to engineering or technology and, in turn, to society as a whole. This undoubtedly beneficial practice of interdisciplinary interactions will be continuously and systematically encouraged by the JCMSE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信