{"title":"利用钛酸钡增强基于波长询问的光纤表面等离子体共振传感器对血红蛋白浓度的灵敏度","authors":"Zhen-Jiang Shi, Shi-Liang Guo, Xin Li, Zhi-Quan Li, Shu-Han Meng, Chong-Zhen Li","doi":"10.37190/oa230201","DOIUrl":null,"url":null,"abstract":"In this paper, the performances of a wavelength interrogation-based optical fiber surface plasmon resonance sensor for hemoglobin (Hb) concentration is investigated by theoretical simulation. The proposed configuration incorporates optical fiber, 70 nm silver, 18 nm barium titanate (BaTiO3), and 2 nm zinc oxide. Simulation results show the sensor exhibits refractive index sensitivity of 4023 nm/RIU and concentration sensitivity of 10.0873 nm/(g·dL), along with Hb concentration varying from 0 to 14 g/dL. This paper especially focuses on the influence of BaTiO3 on the performances of the proposed sensor with light wavelength ranging from 350 to 1000 nm. Comparison analysis indicates sandwiching 18 nm BaTiO3 between sensing layers not only enhances the concentration sensitivity by 30.14% but also decreases the nonlinear error of the sensor from 0.68% to 0.63%. For a wavelength accuracy of 0.1 nm, the proposed sensor can provide a resolution of 0.0099 g/dL for Hb concentration detection.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity enhancement of a wavelength interrogation-based optical fiber surface plasmon resonance sensor for hemoglobin concentration using barium titanate\",\"authors\":\"Zhen-Jiang Shi, Shi-Liang Guo, Xin Li, Zhi-Quan Li, Shu-Han Meng, Chong-Zhen Li\",\"doi\":\"10.37190/oa230201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the performances of a wavelength interrogation-based optical fiber surface plasmon resonance sensor for hemoglobin (Hb) concentration is investigated by theoretical simulation. The proposed configuration incorporates optical fiber, 70 nm silver, 18 nm barium titanate (BaTiO3), and 2 nm zinc oxide. Simulation results show the sensor exhibits refractive index sensitivity of 4023 nm/RIU and concentration sensitivity of 10.0873 nm/(g·dL), along with Hb concentration varying from 0 to 14 g/dL. This paper especially focuses on the influence of BaTiO3 on the performances of the proposed sensor with light wavelength ranging from 350 to 1000 nm. Comparison analysis indicates sandwiching 18 nm BaTiO3 between sensing layers not only enhances the concentration sensitivity by 30.14% but also decreases the nonlinear error of the sensor from 0.68% to 0.63%. For a wavelength accuracy of 0.1 nm, the proposed sensor can provide a resolution of 0.0099 g/dL for Hb concentration detection.\",\"PeriodicalId\":19589,\"journal\":{\"name\":\"Optica Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Applicata\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.37190/oa230201\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa230201","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Sensitivity enhancement of a wavelength interrogation-based optical fiber surface plasmon resonance sensor for hemoglobin concentration using barium titanate
In this paper, the performances of a wavelength interrogation-based optical fiber surface plasmon resonance sensor for hemoglobin (Hb) concentration is investigated by theoretical simulation. The proposed configuration incorporates optical fiber, 70 nm silver, 18 nm barium titanate (BaTiO3), and 2 nm zinc oxide. Simulation results show the sensor exhibits refractive index sensitivity of 4023 nm/RIU and concentration sensitivity of 10.0873 nm/(g·dL), along with Hb concentration varying from 0 to 14 g/dL. This paper especially focuses on the influence of BaTiO3 on the performances of the proposed sensor with light wavelength ranging from 350 to 1000 nm. Comparison analysis indicates sandwiching 18 nm BaTiO3 between sensing layers not only enhances the concentration sensitivity by 30.14% but also decreases the nonlinear error of the sensor from 0.68% to 0.63%. For a wavelength accuracy of 0.1 nm, the proposed sensor can provide a resolution of 0.0099 g/dL for Hb concentration detection.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.