基于ZnO和Ag薄膜的窗口层作为混合节能系统的一部分应用于太阳能电池

IF 0.7 4区 物理与天体物理 Q4 OPTICS
Optica Applicata Pub Date : 2023-01-01 DOI:10.37190/oa230110
Hadi Gholamzadeh, R. Hosseini, H. Veladi, H. Rahimi
{"title":"基于ZnO和Ag薄膜的窗口层作为混合节能系统的一部分应用于太阳能电池","authors":"Hadi Gholamzadeh, R. Hosseini, H. Veladi, H. Rahimi","doi":"10.37190/oa230110","DOIUrl":null,"url":null,"abstract":"We have started a new research project on a hybrid power generation system consisting of piezoelectric, thermoelectric and solar cell modules. In the first step, we have focused on the antireflection coating based on zinc oxide (ZnO) and metal nanolayers incorporated in solar cells. In layered structure containing ZnO and metal nanoscale layers, we have presented the possibility of increasing wave transmission in the visible region by adding the top and bottom cap layers. The enhancement of optical transmission is very important in improving the performance of sensor protections, solar cells, UV protective films and transparent conductive display panels electrode. It is found that, the structure containing both the top and bottom cap layers (S3) yields larger transmittance than the structures S1 without any cap or S2 just with one cap layer. The maximum transmittance in the visible range can be increased from 33% to 67%. In addition, for the TE mode (TM mode), the maximum value of transmission in the S1 and S2 structures occurs at angles close to normal incidence while in the S3 multilayer it happens around 1 radian, that is, the behavior of the TE mode is the opposite of the TM mode. Also, when the incident angle varies, the band edges experience a blue shift. The amount of TE shift is more pronounced than TM one. Moreover, the metal with higher plasma frequency will move the band gap edges to the higher frequencies.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Window layer based on ZnO and Ag thin films incorporated in solar cells as a part of hybrid energy-saving system\",\"authors\":\"Hadi Gholamzadeh, R. Hosseini, H. Veladi, H. Rahimi\",\"doi\":\"10.37190/oa230110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have started a new research project on a hybrid power generation system consisting of piezoelectric, thermoelectric and solar cell modules. In the first step, we have focused on the antireflection coating based on zinc oxide (ZnO) and metal nanolayers incorporated in solar cells. In layered structure containing ZnO and metal nanoscale layers, we have presented the possibility of increasing wave transmission in the visible region by adding the top and bottom cap layers. The enhancement of optical transmission is very important in improving the performance of sensor protections, solar cells, UV protective films and transparent conductive display panels electrode. It is found that, the structure containing both the top and bottom cap layers (S3) yields larger transmittance than the structures S1 without any cap or S2 just with one cap layer. The maximum transmittance in the visible range can be increased from 33% to 67%. In addition, for the TE mode (TM mode), the maximum value of transmission in the S1 and S2 structures occurs at angles close to normal incidence while in the S3 multilayer it happens around 1 radian, that is, the behavior of the TE mode is the opposite of the TM mode. Also, when the incident angle varies, the band edges experience a blue shift. The amount of TE shift is more pronounced than TM one. Moreover, the metal with higher plasma frequency will move the band gap edges to the higher frequencies.\",\"PeriodicalId\":19589,\"journal\":{\"name\":\"Optica Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Applicata\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.37190/oa230110\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa230110","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们已经开始了一个由压电、热电和太阳能电池组件组成的混合发电系统的新研究项目。在第一步,我们专注于基于氧化锌(ZnO)和金属纳米层的抗反射涂层,并将其结合到太阳能电池中。在含有ZnO和金属纳米层的层状结构中,我们提出了通过增加顶部和底部帽层来增加可见光区波透射的可能性。光传输能力的增强对传感器保护、太阳能电池、紫外线保护膜和透明导电显示板电极的性能的提高具有重要意义。结果表明,包含顶帽层和底帽层的结构(S3)比没有帽层的结构S1和只有一帽层的结构S2的透光率更高。可见光范围内的最大透过率可由33%提高到67%。另外,对于TE模式(TM模式),S1和S2结构的透射最大值发生在接近法入射角处,而S3多层结构的透射最大值发生在1弧度左右,即TE模式的行为与TM模式相反。此外,当入射角变化时,带边缘经历蓝移。TE偏移量比TM偏移量更明显。此外,等离子体频率较高的金属会使带隙边缘向更高的频率移动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Window layer based on ZnO and Ag thin films incorporated in solar cells as a part of hybrid energy-saving system
We have started a new research project on a hybrid power generation system consisting of piezoelectric, thermoelectric and solar cell modules. In the first step, we have focused on the antireflection coating based on zinc oxide (ZnO) and metal nanolayers incorporated in solar cells. In layered structure containing ZnO and metal nanoscale layers, we have presented the possibility of increasing wave transmission in the visible region by adding the top and bottom cap layers. The enhancement of optical transmission is very important in improving the performance of sensor protections, solar cells, UV protective films and transparent conductive display panels electrode. It is found that, the structure containing both the top and bottom cap layers (S3) yields larger transmittance than the structures S1 without any cap or S2 just with one cap layer. The maximum transmittance in the visible range can be increased from 33% to 67%. In addition, for the TE mode (TM mode), the maximum value of transmission in the S1 and S2 structures occurs at angles close to normal incidence while in the S3 multilayer it happens around 1 radian, that is, the behavior of the TE mode is the opposite of the TM mode. Also, when the incident angle varies, the band edges experience a blue shift. The amount of TE shift is more pronounced than TM one. Moreover, the metal with higher plasma frequency will move the band gap edges to the higher frequencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optica Applicata
Optica Applicata 物理-光学
CiteScore
1.00
自引率
16.70%
发文量
21
审稿时长
4 months
期刊介绍: Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信