深度学习移相数字全息中白细胞的相位恢复

IF 0.7 4区 物理与天体物理 Q4 OPTICS
Optica Applicata Pub Date : 2023-01-01 DOI:10.37190/oa230109
Shuyang Jin, Xiaoqing Xu, Jili Chen, Yudan Ni
{"title":"深度学习移相数字全息中白细胞的相位恢复","authors":"Shuyang Jin, Xiaoqing Xu, Jili Chen, Yudan Ni","doi":"10.37190/oa230109","DOIUrl":null,"url":null,"abstract":"Phase retrieval and phase unwrapping are the two important problems for enabling quantitative phase imaging of cells in phase-shifting digital holography. To simultaneously cope with these two problems, a deep-learning phase-shifting digital holography method is proposed in this paper. The proposed method can establish the continuous mapping function of the interferogram to the ground-truth phase using the end-to-end convolutional neural network. With a well-trained deep convolutional neural network, this method can retrieve the phase from one-frame blindly phase-shifted interferogram, without phase unwrapping. The feasibility and applicability of the proposed method are verified by the simulation experiments of the microsphere and white blood cells, respectively. This method will pave the way to the quantitative phase imaging of biological cells with complex substructures.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase retrieval without phase unwrapping for white blood cells in deep-learning phase-shifting digital holography\",\"authors\":\"Shuyang Jin, Xiaoqing Xu, Jili Chen, Yudan Ni\",\"doi\":\"10.37190/oa230109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase retrieval and phase unwrapping are the two important problems for enabling quantitative phase imaging of cells in phase-shifting digital holography. To simultaneously cope with these two problems, a deep-learning phase-shifting digital holography method is proposed in this paper. The proposed method can establish the continuous mapping function of the interferogram to the ground-truth phase using the end-to-end convolutional neural network. With a well-trained deep convolutional neural network, this method can retrieve the phase from one-frame blindly phase-shifted interferogram, without phase unwrapping. The feasibility and applicability of the proposed method are verified by the simulation experiments of the microsphere and white blood cells, respectively. This method will pave the way to the quantitative phase imaging of biological cells with complex substructures.\",\"PeriodicalId\":19589,\"journal\":{\"name\":\"Optica Applicata\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Applicata\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.37190/oa230109\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa230109","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

相位恢复和相位展开是实现相移数字全息中细胞定量相位成像的两个重要问题。为了同时解决这两个问题,本文提出了一种深度学习移相数字全息方法。该方法利用端到端卷积神经网络建立干涉图到地真相位的连续映射函数。该方法利用训练良好的深度卷积神经网络,可以从一帧盲相移干涉图中提取相位,而不需要进行相位解包裹。通过微球和白细胞的模拟实验,验证了所提方法的可行性和适用性。该方法将为具有复杂亚结构的生物细胞的定量相位成像铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase retrieval without phase unwrapping for white blood cells in deep-learning phase-shifting digital holography
Phase retrieval and phase unwrapping are the two important problems for enabling quantitative phase imaging of cells in phase-shifting digital holography. To simultaneously cope with these two problems, a deep-learning phase-shifting digital holography method is proposed in this paper. The proposed method can establish the continuous mapping function of the interferogram to the ground-truth phase using the end-to-end convolutional neural network. With a well-trained deep convolutional neural network, this method can retrieve the phase from one-frame blindly phase-shifted interferogram, without phase unwrapping. The feasibility and applicability of the proposed method are verified by the simulation experiments of the microsphere and white blood cells, respectively. This method will pave the way to the quantitative phase imaging of biological cells with complex substructures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optica Applicata
Optica Applicata 物理-光学
CiteScore
1.00
自引率
16.70%
发文量
21
审稿时长
4 months
期刊介绍: Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信