{"title":"随机粗糙表面背向散射光偏振的蒙特卡罗模拟","authors":"Yuxiang Jiang, Zhenhua Li","doi":"10.37190/oa230105","DOIUrl":null,"url":null,"abstract":"Laser detection devices obtain target information from back-scattered light, such as lidar. The recognition rate can be improved by analyzing intensity and polarization of echo signal. In this paper, Monte Carlo method is used to generate a large number of randomly rough surfaces to simulate targets. Every rough surface is discretized into a large number of micro-surface elements. Stokes parameters of back-scattered light are calculated by numerical integration. Incident light is p-, s-, 45° linearly polarized light and right-hand circularly polarized light, respectively. Numerical results show that when s- and p-linearly polarized light incident on a metal rough surface, back-scattered light appears circularly polarized component. Metal rough surface resembles a wave plate with phase difference, with the fast axis parallel or perpendicular to the 45° direction. When linearly polarized light is incident on dielectric rough surface, back-scattered light has no circularly polarized component. Experimental data are consistent with the numerical results. The above research provides a new basis for laser detection device to identify metal targets from the environmental background.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monte Carlo simulation of polarization of light back-scattered from randomly rough surfaces\",\"authors\":\"Yuxiang Jiang, Zhenhua Li\",\"doi\":\"10.37190/oa230105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser detection devices obtain target information from back-scattered light, such as lidar. The recognition rate can be improved by analyzing intensity and polarization of echo signal. In this paper, Monte Carlo method is used to generate a large number of randomly rough surfaces to simulate targets. Every rough surface is discretized into a large number of micro-surface elements. Stokes parameters of back-scattered light are calculated by numerical integration. Incident light is p-, s-, 45° linearly polarized light and right-hand circularly polarized light, respectively. Numerical results show that when s- and p-linearly polarized light incident on a metal rough surface, back-scattered light appears circularly polarized component. Metal rough surface resembles a wave plate with phase difference, with the fast axis parallel or perpendicular to the 45° direction. When linearly polarized light is incident on dielectric rough surface, back-scattered light has no circularly polarized component. Experimental data are consistent with the numerical results. The above research provides a new basis for laser detection device to identify metal targets from the environmental background.\",\"PeriodicalId\":19589,\"journal\":{\"name\":\"Optica Applicata\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Applicata\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.37190/oa230105\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa230105","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Monte Carlo simulation of polarization of light back-scattered from randomly rough surfaces
Laser detection devices obtain target information from back-scattered light, such as lidar. The recognition rate can be improved by analyzing intensity and polarization of echo signal. In this paper, Monte Carlo method is used to generate a large number of randomly rough surfaces to simulate targets. Every rough surface is discretized into a large number of micro-surface elements. Stokes parameters of back-scattered light are calculated by numerical integration. Incident light is p-, s-, 45° linearly polarized light and right-hand circularly polarized light, respectively. Numerical results show that when s- and p-linearly polarized light incident on a metal rough surface, back-scattered light appears circularly polarized component. Metal rough surface resembles a wave plate with phase difference, with the fast axis parallel or perpendicular to the 45° direction. When linearly polarized light is incident on dielectric rough surface, back-scattered light has no circularly polarized component. Experimental data are consistent with the numerical results. The above research provides a new basis for laser detection device to identify metal targets from the environmental background.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.