{"title":"采用稀疏表示的基于干涉的光学非对称双图像加密与认证方案","authors":"Guangyu Luan, Caojun Huang","doi":"10.37190/oa220402","DOIUrl":null,"url":null,"abstract":"We report an optical asymmetric scheme for double-image encryption and authentication based on interference using sparse representation. We employ sparse representation and interference to process the Fresnel spectra related with the two original images, and then respectively acquire two ciphertexts and two pairs of private keys. Each original image possesses its corresponding two private keys. Furthermore, the decrypted image is compared with its corresponding plaintext with the aid of a nonlinear correlation for authentication. In the proposed scheme, any information concerning each primary image and comprising its silhouette cannot be recognized even though one, two, or even three masks of the two ciphertexts and two private keys are utilized for decryption. The Fresnel spectrum functions which have different diffraction distances enhance the security of the proposal significantly. Moreover, the proposal also avoids the crosstalk problem. The effectiveness and security of this proposed method are demonstrated via numerical simulations.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical asymmetric double-image encryption and authentication in an interference-based scheme using sparse representation\",\"authors\":\"Guangyu Luan, Caojun Huang\",\"doi\":\"10.37190/oa220402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report an optical asymmetric scheme for double-image encryption and authentication based on interference using sparse representation. We employ sparse representation and interference to process the Fresnel spectra related with the two original images, and then respectively acquire two ciphertexts and two pairs of private keys. Each original image possesses its corresponding two private keys. Furthermore, the decrypted image is compared with its corresponding plaintext with the aid of a nonlinear correlation for authentication. In the proposed scheme, any information concerning each primary image and comprising its silhouette cannot be recognized even though one, two, or even three masks of the two ciphertexts and two private keys are utilized for decryption. The Fresnel spectrum functions which have different diffraction distances enhance the security of the proposal significantly. Moreover, the proposal also avoids the crosstalk problem. The effectiveness and security of this proposed method are demonstrated via numerical simulations.\",\"PeriodicalId\":19589,\"journal\":{\"name\":\"Optica Applicata\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Applicata\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.37190/oa220402\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa220402","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Optical asymmetric double-image encryption and authentication in an interference-based scheme using sparse representation
We report an optical asymmetric scheme for double-image encryption and authentication based on interference using sparse representation. We employ sparse representation and interference to process the Fresnel spectra related with the two original images, and then respectively acquire two ciphertexts and two pairs of private keys. Each original image possesses its corresponding two private keys. Furthermore, the decrypted image is compared with its corresponding plaintext with the aid of a nonlinear correlation for authentication. In the proposed scheme, any information concerning each primary image and comprising its silhouette cannot be recognized even though one, two, or even three masks of the two ciphertexts and two private keys are utilized for decryption. The Fresnel spectrum functions which have different diffraction distances enhance the security of the proposal significantly. Moreover, the proposal also avoids the crosstalk problem. The effectiveness and security of this proposed method are demonstrated via numerical simulations.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.