{"title":"色散斜率对光子晶体光纤孤子光谱隧穿的影响","authors":"Yunxia Yang, Hua Yang, Xiongfeng Tong, Saili Zhao, Shuyuan Chen","doi":"10.37190/oa210309","DOIUrl":null,"url":null,"abstract":"We report a numerical investigation of how the dispersion slope affects the soliton spectral tunneling (SST) in a photonic crystal fiber with three zero dispersion wavelengths. It is discovered that a larger dispersion slope makes group-velocity mismatch between the initial soliton and the transferred wave thereby suppressing the SST effect, while a proper decrease of the dispersion slope enhances the SST effect to widen a supercontinuum range. Besides, we find a soliton-like leaking dispersion wave, which can sustain information and energy for a short time within a particular spectral range.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"59 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of dispersion slope on soliton spectral tunneling in photonic crystal fiber\",\"authors\":\"Yunxia Yang, Hua Yang, Xiongfeng Tong, Saili Zhao, Shuyuan Chen\",\"doi\":\"10.37190/oa210309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a numerical investigation of how the dispersion slope affects the soliton spectral tunneling (SST) in a photonic crystal fiber with three zero dispersion wavelengths. It is discovered that a larger dispersion slope makes group-velocity mismatch between the initial soliton and the transferred wave thereby suppressing the SST effect, while a proper decrease of the dispersion slope enhances the SST effect to widen a supercontinuum range. Besides, we find a soliton-like leaking dispersion wave, which can sustain information and energy for a short time within a particular spectral range.\",\"PeriodicalId\":19589,\"journal\":{\"name\":\"Optica Applicata\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Applicata\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.37190/oa210309\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa210309","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Influence of dispersion slope on soliton spectral tunneling in photonic crystal fiber
We report a numerical investigation of how the dispersion slope affects the soliton spectral tunneling (SST) in a photonic crystal fiber with three zero dispersion wavelengths. It is discovered that a larger dispersion slope makes group-velocity mismatch between the initial soliton and the transferred wave thereby suppressing the SST effect, while a proper decrease of the dispersion slope enhances the SST effect to widen a supercontinuum range. Besides, we find a soliton-like leaking dispersion wave, which can sustain information and energy for a short time within a particular spectral range.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.