非局部边界条件下一差分特征值问题的谱结构

IF 1.6 3区 数学 Q1 MATHEMATICS
M. Sapagovas, Kristina Pupalaigė, R. Čiupaila, T. Meškauskas
{"title":"非局部边界条件下一差分特征值问题的谱结构","authors":"M. Sapagovas, Kristina Pupalaigė, R. Čiupaila, T. Meškauskas","doi":"10.3846/mma.2023.17503","DOIUrl":null,"url":null,"abstract":"The difference eigenvalue problem approximating the one-dimensional differential equation with the variable weight coefficients in an integral conditions is considered. The cases without negative eigenvalue in the spectrum of difference eigenvalue problem were analyzed. Analysis of the conditions of stability of difference schemes for parabolic equations was carried out according to the theoretical results and results of the numerical experiment.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"28 1","pages":"522-541"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the spectrum Structure for One difference eigenvalue Problem with nonlocal boundary conditions\",\"authors\":\"M. Sapagovas, Kristina Pupalaigė, R. Čiupaila, T. Meškauskas\",\"doi\":\"10.3846/mma.2023.17503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The difference eigenvalue problem approximating the one-dimensional differential equation with the variable weight coefficients in an integral conditions is considered. The cases without negative eigenvalue in the spectrum of difference eigenvalue problem were analyzed. Analysis of the conditions of stability of difference schemes for parabolic equations was carried out according to the theoretical results and results of the numerical experiment.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":\"28 1\",\"pages\":\"522-541\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2023.17503\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2023.17503","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了在积分条件下近似一维变权系数微分方程的差分特征值问题。分析了差分特征值问题谱中无负特征值的情况。根据理论结果和数值实验结果,对抛物型方程差分格式的稳定性条件进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the spectrum Structure for One difference eigenvalue Problem with nonlocal boundary conditions
The difference eigenvalue problem approximating the one-dimensional differential equation with the variable weight coefficients in an integral conditions is considered. The cases without negative eigenvalue in the spectrum of difference eigenvalue problem were analyzed. Analysis of the conditions of stability of difference schemes for parabolic equations was carried out according to the theoretical results and results of the numerical experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信