{"title":"基于曲率的径向基函数表征:在插值中的应用","authors":"Mohammad Heidari, Maryam Mohammadi, S. Marchi","doi":"10.3846/mma.2023.16897","DOIUrl":null,"url":null,"abstract":"Choosing the scale or shape parameter of radial basis functions (RBFs) is a well-documented but still an open problem in kernel-based methods. It is common to tune it according to the applications, and it plays a crucial role both for the accuracy and stability of the method. In this paper, we first devise a direct relation between the shape parameter of RBFs and their curvature at each point. This leads to characterizing RBFs to scalable and unscalable ones. We prove that all scalable RBFs lie in the -class which means that their curvature at the point xj is proportional to, where cj is the corresponding spatially variable shape parameter at xj. Some of the most commonly used RBFs are then characterized and classified accordingly to their curvature. Then, the fundamental theory of plane curves helps us recover univariate functions from scattered data, by enforcing the exact and approximate solutions have the same curvature at the point where they meet. This leads to introducing curvature-based scaled RBFs with shape parameters depending on the function values and approximate curvature values of the function to be approximated. Several numerical experiments are devoted to show that the method performs better than the standard fixed-scale basis and some other shape parameter selection methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curvature based characterization of radial Basis Functions: Application to interpolation\",\"authors\":\"Mohammad Heidari, Maryam Mohammadi, S. Marchi\",\"doi\":\"10.3846/mma.2023.16897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Choosing the scale or shape parameter of radial basis functions (RBFs) is a well-documented but still an open problem in kernel-based methods. It is common to tune it according to the applications, and it plays a crucial role both for the accuracy and stability of the method. In this paper, we first devise a direct relation between the shape parameter of RBFs and their curvature at each point. This leads to characterizing RBFs to scalable and unscalable ones. We prove that all scalable RBFs lie in the -class which means that their curvature at the point xj is proportional to, where cj is the corresponding spatially variable shape parameter at xj. Some of the most commonly used RBFs are then characterized and classified accordingly to their curvature. Then, the fundamental theory of plane curves helps us recover univariate functions from scattered data, by enforcing the exact and approximate solutions have the same curvature at the point where they meet. This leads to introducing curvature-based scaled RBFs with shape parameters depending on the function values and approximate curvature values of the function to be approximated. Several numerical experiments are devoted to show that the method performs better than the standard fixed-scale basis and some other shape parameter selection methods.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2023.16897\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2023.16897","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Curvature based characterization of radial Basis Functions: Application to interpolation
Choosing the scale or shape parameter of radial basis functions (RBFs) is a well-documented but still an open problem in kernel-based methods. It is common to tune it according to the applications, and it plays a crucial role both for the accuracy and stability of the method. In this paper, we first devise a direct relation between the shape parameter of RBFs and their curvature at each point. This leads to characterizing RBFs to scalable and unscalable ones. We prove that all scalable RBFs lie in the -class which means that their curvature at the point xj is proportional to, where cj is the corresponding spatially variable shape parameter at xj. Some of the most commonly used RBFs are then characterized and classified accordingly to their curvature. Then, the fundamental theory of plane curves helps us recover univariate functions from scattered data, by enforcing the exact and approximate solutions have the same curvature at the point where they meet. This leads to introducing curvature-based scaled RBFs with shape parameters depending on the function values and approximate curvature values of the function to be approximated. Several numerical experiments are devoted to show that the method performs better than the standard fixed-scale basis and some other shape parameter selection methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.