{"title":"交联时间对散装聚癸二酸甘油物理化学和力学性能的影响。","authors":"P. Piszko, B. Kryszak, K. Szustakiewicz","doi":"10.37190/abb-02208-2023-04","DOIUrl":null,"url":null,"abstract":"In the presented study, a PGS prepolymer (pPGS) was synthesized utilizing polycondensation technique (equimolar sebacic acid:glycerol ratio, 130 °C, 24 h). Subsequently, the pPGS was thermally cross-linked in vacuum oven in 130 °C for 84 and 168 h. The cylindrical and dumbbell-shaped samples were subjected for physico-chemical and thorough mechanical analysis including tensile and compressive strength evaluation as well as dynamic mechanical thermal analysis (DMTA). The study allowed for the investigation of alteration of PGS properties during cross-linking and decay of elastomeric properties over prolonged cross-linking time. Moreover, a deconvolution in FTIR analysis allowed to glimpse into the hydrogen bonding structure of the materials which weakens during the cross-linking. The obtained results can be utilized during designing PGS-based bulk materials for biomedical application where bearing mechanical loads and tuned chemical character is of vital importance.","PeriodicalId":6897,"journal":{"name":"Acta of bioengineering and biomechanics","volume":"24 4 1","pages":"85-93"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Influence of cross-linking time on physico-chemical and mechanical properties of bulk poly(glycerol sebacate).\",\"authors\":\"P. Piszko, B. Kryszak, K. Szustakiewicz\",\"doi\":\"10.37190/abb-02208-2023-04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the presented study, a PGS prepolymer (pPGS) was synthesized utilizing polycondensation technique (equimolar sebacic acid:glycerol ratio, 130 °C, 24 h). Subsequently, the pPGS was thermally cross-linked in vacuum oven in 130 °C for 84 and 168 h. The cylindrical and dumbbell-shaped samples were subjected for physico-chemical and thorough mechanical analysis including tensile and compressive strength evaluation as well as dynamic mechanical thermal analysis (DMTA). The study allowed for the investigation of alteration of PGS properties during cross-linking and decay of elastomeric properties over prolonged cross-linking time. Moreover, a deconvolution in FTIR analysis allowed to glimpse into the hydrogen bonding structure of the materials which weakens during the cross-linking. The obtained results can be utilized during designing PGS-based bulk materials for biomedical application where bearing mechanical loads and tuned chemical character is of vital importance.\",\"PeriodicalId\":6897,\"journal\":{\"name\":\"Acta of bioengineering and biomechanics\",\"volume\":\"24 4 1\",\"pages\":\"85-93\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta of bioengineering and biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.37190/abb-02208-2023-04\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta of bioengineering and biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/abb-02208-2023-04","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Influence of cross-linking time on physico-chemical and mechanical properties of bulk poly(glycerol sebacate).
In the presented study, a PGS prepolymer (pPGS) was synthesized utilizing polycondensation technique (equimolar sebacic acid:glycerol ratio, 130 °C, 24 h). Subsequently, the pPGS was thermally cross-linked in vacuum oven in 130 °C for 84 and 168 h. The cylindrical and dumbbell-shaped samples were subjected for physico-chemical and thorough mechanical analysis including tensile and compressive strength evaluation as well as dynamic mechanical thermal analysis (DMTA). The study allowed for the investigation of alteration of PGS properties during cross-linking and decay of elastomeric properties over prolonged cross-linking time. Moreover, a deconvolution in FTIR analysis allowed to glimpse into the hydrogen bonding structure of the materials which weakens during the cross-linking. The obtained results can be utilized during designing PGS-based bulk materials for biomedical application where bearing mechanical loads and tuned chemical character is of vital importance.
期刊介绍:
Acta of Bioengineering and Biomechanics is a platform allowing presentation of investigations results, exchange of ideas and experiences among researchers with technical and medical background.
Papers published in Acta of Bioengineering and Biomechanics may cover a wide range of topics in biomechanics, including, but not limited to:
Tissue Biomechanics,
Orthopedic Biomechanics,
Biomaterials,
Sport Biomechanics.