一种新型脊柱稳定系统的摩擦和磨损过程分析。第1部分。金属杆-聚合物绳摩擦接头静摩擦与动摩擦的研究

IF 0.8 4区 医学 Q4 BIOPHYSICS
A. Brończyk
{"title":"一种新型脊柱稳定系统的摩擦和磨损过程分析。第1部分。金属杆-聚合物绳摩擦接头静摩擦与动摩擦的研究","authors":"A. Brończyk","doi":"10.37190/abb-01962-2021-03","DOIUrl":null,"url":null,"abstract":"Purpose: This analysis is the first part of research that aims to develop a model of the tribological wear of PE-UHMW cord – biometal rod combination. This type of sliding joint is applied in spine stabilization systems that enable the treatment of early-onset idiopathic scoliosis. Methods: The friction tests included force measurements, followed by the determination of static and kinetic friction coefficients as a function of the number of the performed movement cycles, and static friction coefficient with regards to the string tension force FN in the range of 50–300 N. Additionally, the surface roughness and microscopic observations of the metal rods were made. The friction measurements were carried out at a stabilized temperature T = 38 °C in the presence of distilled water and acidic sodium lactate. Results: The measurements confirmed the impact of both the number of completed movement cycles and the value of the force loaded on the cord on the static friction coefficient. Similar values of kinetic friction force occur for the pairs with the titanium alloys rods, as well as for the pairs with the steel and CoCr rod. The type of lubricant affected the obtained measurement results unevenly: (Ti6Al4V and Ti6Al7Nb – slight impact, steel 316L and CoCrMo – large impact). During microscopic observations, numerous wear products, were visible, including harder than the base material large conglomerates. Conclusions: Susceptibility of polymer fibres results in its increased resistance to wear, but it can be also combined with an increase in wear of the surface of the metal rod.","PeriodicalId":6897,"journal":{"name":"Acta of bioengineering and biomechanics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of friction and wear processes in an innovative spine stabilization system. Part 1. A study of static and kinetic friction of a metal rod-polymer cord friction joint\",\"authors\":\"A. Brończyk\",\"doi\":\"10.37190/abb-01962-2021-03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: This analysis is the first part of research that aims to develop a model of the tribological wear of PE-UHMW cord – biometal rod combination. This type of sliding joint is applied in spine stabilization systems that enable the treatment of early-onset idiopathic scoliosis. Methods: The friction tests included force measurements, followed by the determination of static and kinetic friction coefficients as a function of the number of the performed movement cycles, and static friction coefficient with regards to the string tension force FN in the range of 50–300 N. Additionally, the surface roughness and microscopic observations of the metal rods were made. The friction measurements were carried out at a stabilized temperature T = 38 °C in the presence of distilled water and acidic sodium lactate. Results: The measurements confirmed the impact of both the number of completed movement cycles and the value of the force loaded on the cord on the static friction coefficient. Similar values of kinetic friction force occur for the pairs with the titanium alloys rods, as well as for the pairs with the steel and CoCr rod. The type of lubricant affected the obtained measurement results unevenly: (Ti6Al4V and Ti6Al7Nb – slight impact, steel 316L and CoCrMo – large impact). During microscopic observations, numerous wear products, were visible, including harder than the base material large conglomerates. Conclusions: Susceptibility of polymer fibres results in its increased resistance to wear, but it can be also combined with an increase in wear of the surface of the metal rod.\",\"PeriodicalId\":6897,\"journal\":{\"name\":\"Acta of bioengineering and biomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta of bioengineering and biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.37190/abb-01962-2021-03\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta of bioengineering and biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/abb-01962-2021-03","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究是建立PE-UHMW脐带-生物金属棒组合摩擦学磨损模型的第一部分。这种类型的滑动关节应用于脊柱稳定系统,使治疗早发特发性脊柱侧凸成为可能。方法:摩擦试验包括力测量,静摩擦系数和动摩擦系数随运动次数的变化,静摩擦系数随弦张力FN在50-300 n范围内的变化,并对金属棒的表面粗糙度和微观形貌进行观察。摩擦测量是在稳定温度T = 38℃下,在蒸馏水和酸性乳酸钠存在下进行的。结果:测量结果证实了完成运动周期的次数和加载在绳上的力的值对静摩擦系数的影响。与钛合金棒、钢和CoCr棒的摩擦副的动摩擦力值相似。润滑油类型对测量结果的影响不均匀:(Ti6Al4V和Ti6Al7Nb -轻微冲击,316L钢和CoCrMo -大冲击)。在显微观察中,可以看到许多磨损产物,包括比基材更硬的大型砾岩。结论:聚合物纤维的敏感性导致其耐磨性增加,但也可能与金属棒表面磨损增加相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of friction and wear processes in an innovative spine stabilization system. Part 1. A study of static and kinetic friction of a metal rod-polymer cord friction joint
Purpose: This analysis is the first part of research that aims to develop a model of the tribological wear of PE-UHMW cord – biometal rod combination. This type of sliding joint is applied in spine stabilization systems that enable the treatment of early-onset idiopathic scoliosis. Methods: The friction tests included force measurements, followed by the determination of static and kinetic friction coefficients as a function of the number of the performed movement cycles, and static friction coefficient with regards to the string tension force FN in the range of 50–300 N. Additionally, the surface roughness and microscopic observations of the metal rods were made. The friction measurements were carried out at a stabilized temperature T = 38 °C in the presence of distilled water and acidic sodium lactate. Results: The measurements confirmed the impact of both the number of completed movement cycles and the value of the force loaded on the cord on the static friction coefficient. Similar values of kinetic friction force occur for the pairs with the titanium alloys rods, as well as for the pairs with the steel and CoCr rod. The type of lubricant affected the obtained measurement results unevenly: (Ti6Al4V and Ti6Al7Nb – slight impact, steel 316L and CoCrMo – large impact). During microscopic observations, numerous wear products, were visible, including harder than the base material large conglomerates. Conclusions: Susceptibility of polymer fibres results in its increased resistance to wear, but it can be also combined with an increase in wear of the surface of the metal rod.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta of bioengineering and biomechanics
Acta of bioengineering and biomechanics BIOPHYSICS-ENGINEERING, BIOMEDICAL
CiteScore
2.10
自引率
10.00%
发文量
0
期刊介绍: Acta of Bioengineering and Biomechanics is a platform allowing presentation of investigations results, exchange of ideas and experiences among researchers with technical and medical background. Papers published in Acta of Bioengineering and Biomechanics may cover a wide range of topics in biomechanics, including, but not limited to: Tissue Biomechanics, Orthopedic Biomechanics, Biomaterials, Sport Biomechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信