模拟假内膜形成的粗糙微通道中血流的离散相位模型

IF 0.8 4区 医学 Q4 BIOPHYSICS
M. Kopernik, Karina Dyrda, Przemyslaw Kurtyka, R. Major
{"title":"模拟假内膜形成的粗糙微通道中血流的离散相位模型","authors":"M. Kopernik, Karina Dyrda, Przemyslaw Kurtyka, R. Major","doi":"10.37190/abb-01989-2021-02","DOIUrl":null,"url":null,"abstract":"Purpose: The goal of the present study was the development of discrete phase model to simulate the phenomenon of backfilling a morphologically complex surface by red blood cells (RBCs) in a flow microchannel and to anticipate the conditions of forming a pseudointima. The objective of the experimental studies that inspired the development of the simulation was to create a surface that stimulates the formation of the pseudointima layer. Methods: The finite volume method (FVM) and discrete particle method (DPM) were applied to develop the target model. In addition, a mixture model and a roughness model of bottom layer were tested in the present study to show their influence on simulation the phenomenon of backfilling a morphologically complex surface by RBCs in a flow microchannel. Results: Numerical models were developed including: a) FVM models to compare the effect of applying boundary conditions with/without roughness and cubes, as well as the analysis of their influence on blood velocity and shear stress; b) mixture models to compare the effect of applying different boundary conditions and cubes on computed results; c) DPM models to compare the effect of applying and not applying roughness as a boundary condition; d) DPM models with a morphologically complex surface and RBCs collisions to present RBCs concentration, velocity and time distributions during flow in a channel. Conclusions: The analysis carried out for the developed numerical models indicates that DPM model with cubes computes the best results. It also shows the backfilling of a morphologically complex surface of the bottom microchannel with RBCs.","PeriodicalId":6897,"journal":{"name":"Acta of bioengineering and biomechanics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete phase model of blood flow in a roughness microchannel simulating the formation of pseudointima\",\"authors\":\"M. Kopernik, Karina Dyrda, Przemyslaw Kurtyka, R. Major\",\"doi\":\"10.37190/abb-01989-2021-02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: The goal of the present study was the development of discrete phase model to simulate the phenomenon of backfilling a morphologically complex surface by red blood cells (RBCs) in a flow microchannel and to anticipate the conditions of forming a pseudointima. The objective of the experimental studies that inspired the development of the simulation was to create a surface that stimulates the formation of the pseudointima layer. Methods: The finite volume method (FVM) and discrete particle method (DPM) were applied to develop the target model. In addition, a mixture model and a roughness model of bottom layer were tested in the present study to show their influence on simulation the phenomenon of backfilling a morphologically complex surface by RBCs in a flow microchannel. Results: Numerical models were developed including: a) FVM models to compare the effect of applying boundary conditions with/without roughness and cubes, as well as the analysis of their influence on blood velocity and shear stress; b) mixture models to compare the effect of applying different boundary conditions and cubes on computed results; c) DPM models to compare the effect of applying and not applying roughness as a boundary condition; d) DPM models with a morphologically complex surface and RBCs collisions to present RBCs concentration, velocity and time distributions during flow in a channel. Conclusions: The analysis carried out for the developed numerical models indicates that DPM model with cubes computes the best results. It also shows the backfilling of a morphologically complex surface of the bottom microchannel with RBCs.\",\"PeriodicalId\":6897,\"journal\":{\"name\":\"Acta of bioengineering and biomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta of bioengineering and biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.37190/abb-01989-2021-02\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta of bioengineering and biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/abb-01989-2021-02","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究的目的是建立离散相模型来模拟红细胞在流动微通道中回填形态复杂表面的现象,并预测形成假内膜的条件。激发模拟发展的实验研究的目的是创造一个刺激假内膜层形成的表面。方法:采用有限体积法(FVM)和离散粒子法(DPM)建立目标模型。此外,本研究还对混合模型和底层粗糙度模型进行了测试,以显示它们对流动微通道中红细胞回填形态复杂表面现象的模拟影响。结果:建立了数值模型,包括:a) FVM模型,比较了有无粗糙度边界条件和立方体边界条件的影响,分析了它们对血流速度和剪切应力的影响;B)混合模型,比较应用不同边界条件和立方体对计算结果的影响;c) DPM模型,比较施加和不施加粗糙度作为边界条件的效果;d)具有形态复杂表面和红细胞碰撞的DPM模型,以呈现红细胞在通道内流动时的浓度、速度和时间分布。结论:对已建立的数值模型进行了分析,结果表明立方体DPM模型的计算效果最好。它还显示了底部微通道具有红细胞的形态复杂表面的回填。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete phase model of blood flow in a roughness microchannel simulating the formation of pseudointima
Purpose: The goal of the present study was the development of discrete phase model to simulate the phenomenon of backfilling a morphologically complex surface by red blood cells (RBCs) in a flow microchannel and to anticipate the conditions of forming a pseudointima. The objective of the experimental studies that inspired the development of the simulation was to create a surface that stimulates the formation of the pseudointima layer. Methods: The finite volume method (FVM) and discrete particle method (DPM) were applied to develop the target model. In addition, a mixture model and a roughness model of bottom layer were tested in the present study to show their influence on simulation the phenomenon of backfilling a morphologically complex surface by RBCs in a flow microchannel. Results: Numerical models were developed including: a) FVM models to compare the effect of applying boundary conditions with/without roughness and cubes, as well as the analysis of their influence on blood velocity and shear stress; b) mixture models to compare the effect of applying different boundary conditions and cubes on computed results; c) DPM models to compare the effect of applying and not applying roughness as a boundary condition; d) DPM models with a morphologically complex surface and RBCs collisions to present RBCs concentration, velocity and time distributions during flow in a channel. Conclusions: The analysis carried out for the developed numerical models indicates that DPM model with cubes computes the best results. It also shows the backfilling of a morphologically complex surface of the bottom microchannel with RBCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta of bioengineering and biomechanics
Acta of bioengineering and biomechanics BIOPHYSICS-ENGINEERING, BIOMEDICAL
CiteScore
2.10
自引率
10.00%
发文量
0
期刊介绍: Acta of Bioengineering and Biomechanics is a platform allowing presentation of investigations results, exchange of ideas and experiences among researchers with technical and medical background. Papers published in Acta of Bioengineering and Biomechanics may cover a wide range of topics in biomechanics, including, but not limited to: Tissue Biomechanics, Orthopedic Biomechanics, Biomaterials, Sport Biomechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信