{"title":"流固耦合SPH与有限元方法的数值模型","authors":"A. Harapin, Jure Radni, Marina Sunara Kusi","doi":"10.31534/engmod.2019.1.ri.02m","DOIUrl":null,"url":null,"abstract":"The paper presents the numerical model developed for the simulation of the fluid-structure interaction problem. The model is based on the so called “partition scheme”, in which the Smoothed Particle Hydrodynamics (SPH) method is used for the fluid and the standard Finite Element Method (FEM), based on shell elements, is used for the structure. Then, the two solvers are coupled to obtain the behaviour of the coupled fluid-structure system. The effects of large displacements and small strains are taken into account in the model for shells. The elasto-plastic material model for the structure (shell), which includes some important nonlinear effects like yielding in compression and tension, is briefly discussed. Some of the model’s possibilities are illustrated in a practical example of a rectangular medium sized fluid tank with rigid and deformable walls under several ground excitations.","PeriodicalId":35748,"journal":{"name":"International Journal for Engineering Modelling","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.31534/engmod.2019.1.ri.02m","citationCount":"2","resultStr":"{\"title\":\"Numerical Model for Fluid-Structure Interaction by the Coupled SPH and the FEM Method\",\"authors\":\"A. Harapin, Jure Radni, Marina Sunara Kusi\",\"doi\":\"10.31534/engmod.2019.1.ri.02m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the numerical model developed for the simulation of the fluid-structure interaction problem. The model is based on the so called “partition scheme”, in which the Smoothed Particle Hydrodynamics (SPH) method is used for the fluid and the standard Finite Element Method (FEM), based on shell elements, is used for the structure. Then, the two solvers are coupled to obtain the behaviour of the coupled fluid-structure system. The effects of large displacements and small strains are taken into account in the model for shells. The elasto-plastic material model for the structure (shell), which includes some important nonlinear effects like yielding in compression and tension, is briefly discussed. Some of the model’s possibilities are illustrated in a practical example of a rectangular medium sized fluid tank with rigid and deformable walls under several ground excitations.\",\"PeriodicalId\":35748,\"journal\":{\"name\":\"International Journal for Engineering Modelling\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.31534/engmod.2019.1.ri.02m\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Engineering Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31534/engmod.2019.1.ri.02m\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Engineering Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31534/engmod.2019.1.ri.02m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Numerical Model for Fluid-Structure Interaction by the Coupled SPH and the FEM Method
The paper presents the numerical model developed for the simulation of the fluid-structure interaction problem. The model is based on the so called “partition scheme”, in which the Smoothed Particle Hydrodynamics (SPH) method is used for the fluid and the standard Finite Element Method (FEM), based on shell elements, is used for the structure. Then, the two solvers are coupled to obtain the behaviour of the coupled fluid-structure system. The effects of large displacements and small strains are taken into account in the model for shells. The elasto-plastic material model for the structure (shell), which includes some important nonlinear effects like yielding in compression and tension, is briefly discussed. Some of the model’s possibilities are illustrated in a practical example of a rectangular medium sized fluid tank with rigid and deformable walls under several ground excitations.
期刊介绍:
Engineering Modelling is a refereed international journal providing an up-to-date reference for the engineers and researchers engaged in computer aided analysis, design and research in the fields of computational mechanics, numerical methods, software develop-ment and engineering modelling.