具有斜积结构的各向同性自相似马尔可夫过程锥的出口时间的精确渐近性

IF 0.4 4区 数学 Q4 STATISTICS & PROBABILITY
Z. Palmowski, Longmin Wang
{"title":"具有斜积结构的各向同性自相似马尔可夫过程锥的出口时间的精确渐近性","authors":"Z. Palmowski, Longmin Wang","doi":"10.37190/0208-4147.41.1.3","DOIUrl":null,"url":null,"abstract":"In this paper we identify the asymptotic tail of the distribution of the exit time $\\tau_C$ from a cone $C$ of an isotropic $\\alpha$-self-similar Markov process $X_t$ with a skew-product structure, that is $X_t$ is a product of its radial process and independent time changed angular component $\\Theta_t$. Under some additional regularity assumptions, the angular process $\\Theta_t$ killed on exiting from the cone $C$ has the transition density that could be expressed in terms of a complete set of orthogonal eigenfunctions with corresponding eigenvalues of an appropriate generator. Using this fact and some asymptotic properties of the exponential functional of a killed L\\'evy process related with Lamperti representation of the radial process, we prove that $$\\mathbb{P}_x(\\tau_C>t)\\sim h(x)t^{-\\kappa_1}$$ as $t\\rightarrow\\infty$ for $h$ and $\\kappa_1$ identified explicitly. The result extends the work of DeBlassie (1988) and Ba\\~nuelos and Smits (1997) concerning the Brownian motion.","PeriodicalId":48996,"journal":{"name":"Probability and Mathematical Statistics-Poland","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2016-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On th exact asymptotics of exit time from a cone of an isotropic alpha-self-similar Markov process with a skew-product structure\",\"authors\":\"Z. Palmowski, Longmin Wang\",\"doi\":\"10.37190/0208-4147.41.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we identify the asymptotic tail of the distribution of the exit time $\\\\tau_C$ from a cone $C$ of an isotropic $\\\\alpha$-self-similar Markov process $X_t$ with a skew-product structure, that is $X_t$ is a product of its radial process and independent time changed angular component $\\\\Theta_t$. Under some additional regularity assumptions, the angular process $\\\\Theta_t$ killed on exiting from the cone $C$ has the transition density that could be expressed in terms of a complete set of orthogonal eigenfunctions with corresponding eigenvalues of an appropriate generator. Using this fact and some asymptotic properties of the exponential functional of a killed L\\\\'evy process related with Lamperti representation of the radial process, we prove that $$\\\\mathbb{P}_x(\\\\tau_C>t)\\\\sim h(x)t^{-\\\\kappa_1}$$ as $t\\\\rightarrow\\\\infty$ for $h$ and $\\\\kappa_1$ identified explicitly. The result extends the work of DeBlassie (1988) and Ba\\\\~nuelos and Smits (1997) concerning the Brownian motion.\",\"PeriodicalId\":48996,\"journal\":{\"name\":\"Probability and Mathematical Statistics-Poland\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2016-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability and Mathematical Statistics-Poland\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37190/0208-4147.41.1.3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability and Mathematical Statistics-Poland","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37190/0208-4147.41.1.3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文从具有斜积结构的各向同性$\alpha$ -自相似马尔可夫过程$X_t$的锥$C$中,确定了出口时间$\tau_C$分布的渐近尾部,即$X_t$是其径向过程与独立时变角分量$\Theta_t$的乘积。在一些附加的正则性假设下,角过程$\Theta_t$在离开锥体$C$时终止,其过渡密度可以用具有相应特征值的适当生成器的正交特征函数的完备集来表示。利用这一事实和与径向过程的Lamperti表示有关的被杀lsamvy过程的指数泛函的一些渐近性质,我们证明了对于$h$和$\kappa_1$的显式识别,$$\mathbb{P}_x(\tau_C>t)\sim h(x)t^{-\kappa_1}$$为$t\rightarrow\infty$。该结果扩展了DeBlassie(1988)、Bañuelos和Smits(1997)关于布朗运动的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On th exact asymptotics of exit time from a cone of an isotropic alpha-self-similar Markov process with a skew-product structure
In this paper we identify the asymptotic tail of the distribution of the exit time $\tau_C$ from a cone $C$ of an isotropic $\alpha$-self-similar Markov process $X_t$ with a skew-product structure, that is $X_t$ is a product of its radial process and independent time changed angular component $\Theta_t$. Under some additional regularity assumptions, the angular process $\Theta_t$ killed on exiting from the cone $C$ has the transition density that could be expressed in terms of a complete set of orthogonal eigenfunctions with corresponding eigenvalues of an appropriate generator. Using this fact and some asymptotic properties of the exponential functional of a killed L\'evy process related with Lamperti representation of the radial process, we prove that $$\mathbb{P}_x(\tau_C>t)\sim h(x)t^{-\kappa_1}$$ as $t\rightarrow\infty$ for $h$ and $\kappa_1$ identified explicitly. The result extends the work of DeBlassie (1988) and Ba\~nuelos and Smits (1997) concerning the Brownian motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: PROBABILITY AND MATHEMATICAL STATISTICS is published by the Kazimierz Urbanik Center for Probability and Mathematical Statistics, and is sponsored jointly by the Faculty of Mathematics and Computer Science of University of Wrocław and the Faculty of Pure and Applied Mathematics of Wrocław University of Science and Technology. The purpose of the journal is to publish original contributions to the theory of probability and mathematical statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信