朗之万动力学不变测度的极限行为

IF 0.4 4区 数学 Q4 STATISTICS & PROBABILITY
Gerardo Barrera Vargas
{"title":"朗之万动力学不变测度的极限行为","authors":"Gerardo Barrera Vargas","doi":"10.37190/0208-4147.00020","DOIUrl":null,"url":null,"abstract":"In this article, we consider the Langevin dynamics on $\\mathbb{R}^d$ with an overdamped vector field and driven by Brownian motion of small amplitude $\\sqrt{\\epsilon}$, $\\epsilon>0$. Under suitable conditions on the vector field, it is well-known that it possesses a unique invariant probability measure $\\mu^{\\epsilon}$. As $\\epsilon$ tends to zero, we prove that the probability measure $\\epsilon^{d/2} \\mu^{\\epsilon}(\\sqrt{\\epsilon}\\mathrm{d}x)$ converges in the $2$-Wasserstein distance to a Gaussian measure with zero-mean vector and non-degenerate covariance matrix which solves a Lyapunov matrix equation. We emphasize that generically no explicit formula for $\\mu^{\\epsilon}$ can be found.","PeriodicalId":48996,"journal":{"name":"Probability and Mathematical Statistics-Poland","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Limit behavior of the invariant measure for Langevin dynamics\",\"authors\":\"Gerardo Barrera Vargas\",\"doi\":\"10.37190/0208-4147.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we consider the Langevin dynamics on $\\\\mathbb{R}^d$ with an overdamped vector field and driven by Brownian motion of small amplitude $\\\\sqrt{\\\\epsilon}$, $\\\\epsilon>0$. Under suitable conditions on the vector field, it is well-known that it possesses a unique invariant probability measure $\\\\mu^{\\\\epsilon}$. As $\\\\epsilon$ tends to zero, we prove that the probability measure $\\\\epsilon^{d/2} \\\\mu^{\\\\epsilon}(\\\\sqrt{\\\\epsilon}\\\\mathrm{d}x)$ converges in the $2$-Wasserstein distance to a Gaussian measure with zero-mean vector and non-degenerate covariance matrix which solves a Lyapunov matrix equation. We emphasize that generically no explicit formula for $\\\\mu^{\\\\epsilon}$ can be found.\",\"PeriodicalId\":48996,\"journal\":{\"name\":\"Probability and Mathematical Statistics-Poland\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability and Mathematical Statistics-Poland\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37190/0208-4147.00020\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability and Mathematical Statistics-Poland","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37190/0208-4147.00020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit behavior of the invariant measure for Langevin dynamics
In this article, we consider the Langevin dynamics on $\mathbb{R}^d$ with an overdamped vector field and driven by Brownian motion of small amplitude $\sqrt{\epsilon}$, $\epsilon>0$. Under suitable conditions on the vector field, it is well-known that it possesses a unique invariant probability measure $\mu^{\epsilon}$. As $\epsilon$ tends to zero, we prove that the probability measure $\epsilon^{d/2} \mu^{\epsilon}(\sqrt{\epsilon}\mathrm{d}x)$ converges in the $2$-Wasserstein distance to a Gaussian measure with zero-mean vector and non-degenerate covariance matrix which solves a Lyapunov matrix equation. We emphasize that generically no explicit formula for $\mu^{\epsilon}$ can be found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: PROBABILITY AND MATHEMATICAL STATISTICS is published by the Kazimierz Urbanik Center for Probability and Mathematical Statistics, and is sponsored jointly by the Faculty of Mathematics and Computer Science of University of Wrocław and the Faculty of Pure and Applied Mathematics of Wrocław University of Science and Technology. The purpose of the journal is to publish original contributions to the theory of probability and mathematical statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信