多维数据近似度量的图形表示:经典和公制多维标度。

The Mathematica journal Pub Date : 2015-01-01 Epub Date: 2015-09-30 DOI:10.3888/tmj.17-7
Martin S Zand, Jiong Wang, Shannon Hilchey
{"title":"多维数据近似度量的图形表示:经典和公制多维标度。","authors":"Martin S Zand, Jiong Wang, Shannon Hilchey","doi":"10.3888/tmj.17-7","DOIUrl":null,"url":null,"abstract":"<p><p>We describe the use of classical and metric multidimensional scaling methods for graphical representation of the proximity between collections of data consisting of cases characterized by multidimensional attributes. These methods can preserve metric differences between cases, while allowing for dimensional reduction and projection to two or three dimensions ideal for data exploration. We demonstrate these methods with three datasets for: (i) the immunological similarity of influenza proteins measured by a multidimensional assay; (ii) influenza protein sequence similarity; and (iii) reconstruction of airport-relative locations from paired proximity measurements. These examples highlight the use of proximity matrices, eigenvalues, eigenvectors, and linear and nonlinear mappings using numerical minimization methods. Some considerations and caveats for each method are also discussed, and compact <i>Mathematica</i> programs are provided.</p>","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4675631/pdf/","citationCount":"0","resultStr":"{\"title\":\"Graphical Representation of Proximity Measures for Multidimensional Data: Classical and Metric Multidimensional Scaling.\",\"authors\":\"Martin S Zand, Jiong Wang, Shannon Hilchey\",\"doi\":\"10.3888/tmj.17-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We describe the use of classical and metric multidimensional scaling methods for graphical representation of the proximity between collections of data consisting of cases characterized by multidimensional attributes. These methods can preserve metric differences between cases, while allowing for dimensional reduction and projection to two or three dimensions ideal for data exploration. We demonstrate these methods with three datasets for: (i) the immunological similarity of influenza proteins measured by a multidimensional assay; (ii) influenza protein sequence similarity; and (iii) reconstruction of airport-relative locations from paired proximity measurements. These examples highlight the use of proximity matrices, eigenvalues, eigenvectors, and linear and nonlinear mappings using numerical minimization methods. Some considerations and caveats for each method are also discussed, and compact <i>Mathematica</i> programs are provided.</p>\",\"PeriodicalId\":91418,\"journal\":{\"name\":\"The Mathematica journal\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4675631/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Mathematica journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3888/tmj.17-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/tmj.17-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/9/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了如何使用经典和度量多维缩放方法,以图形表示由多维属性表征的案例组成的数据集合之间的接近性。这些方法可以保留案例之间的度量差异,同时允许降维并投影到二维或三维,是数据探索的理想选择。我们用三个数据集演示了这些方法:(i) 通过多维检测测量流感蛋白质的免疫学相似性;(ii) 流感蛋白质序列相似性;(iii) 通过成对邻近测量重建机场相关位置。这些示例重点介绍了利用数值最小化方法使用邻近矩阵、特征值、特征向量以及线性和非线性映射的情况。此外,还讨论了每种方法的一些注意事项,并提供了简洁的 Mathematica 程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphical Representation of Proximity Measures for Multidimensional Data: Classical and Metric Multidimensional Scaling.

We describe the use of classical and metric multidimensional scaling methods for graphical representation of the proximity between collections of data consisting of cases characterized by multidimensional attributes. These methods can preserve metric differences between cases, while allowing for dimensional reduction and projection to two or three dimensions ideal for data exploration. We demonstrate these methods with three datasets for: (i) the immunological similarity of influenza proteins measured by a multidimensional assay; (ii) influenza protein sequence similarity; and (iii) reconstruction of airport-relative locations from paired proximity measurements. These examples highlight the use of proximity matrices, eigenvalues, eigenvectors, and linear and nonlinear mappings using numerical minimization methods. Some considerations and caveats for each method are also discussed, and compact Mathematica programs are provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信