万维网上的随机漫步

T. Silvestri
{"title":"万维网上的随机漫步","authors":"T. Silvestri","doi":"10.3888/TMJ.15-9","DOIUrl":null,"url":null,"abstract":"This article presents RandomWalkWeb, a package developed to perform random walks on the World Wide Web and to visualize the resulting data. Building upon the packageʼs functionality, we collected empirical network data consisting of 35,616 unique URLs (approximately 133,500 steps). An analysis was performed at the domain level and several properties of the web were measured. In particular, we estimated the power-law exponent g for the inand out-degree distributions, and obtained values of 2.10± 0.09 and 2.36± 0.1, respectively. These values were found to be in good agreement with previously published results.","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Random Walks on the World Wide Web\",\"authors\":\"T. Silvestri\",\"doi\":\"10.3888/TMJ.15-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents RandomWalkWeb, a package developed to perform random walks on the World Wide Web and to visualize the resulting data. Building upon the packageʼs functionality, we collected empirical network data consisting of 35,616 unique URLs (approximately 133,500 steps). An analysis was performed at the domain level and several properties of the web were measured. In particular, we estimated the power-law exponent g for the inand out-degree distributions, and obtained values of 2.10± 0.09 and 2.36± 0.1, respectively. These values were found to be in good agreement with previously published results.\",\"PeriodicalId\":91418,\"journal\":{\"name\":\"The Mathematica journal\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Mathematica journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3888/TMJ.15-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.15-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了RandomWalkWeb,这是一个开发用于在万维网上执行随机漫步并将结果数据可视化的包。基于包的功能,我们收集了由35,616个唯一url(大约133,500个步骤)组成的经验网络数据。在领域层面上进行了分析,并测量了网络的几个特性。特别地,我们估计了进出度分布的幂律指数g,分别为2.10±0.09和2.36±0.1。这些值被发现与先前发表的结果非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Walks on the World Wide Web
This article presents RandomWalkWeb, a package developed to perform random walks on the World Wide Web and to visualize the resulting data. Building upon the packageʼs functionality, we collected empirical network data consisting of 35,616 unique URLs (approximately 133,500 steps). An analysis was performed at the domain level and several properties of the web were measured. In particular, we estimated the power-law exponent g for the inand out-degree distributions, and obtained values of 2.10± 0.09 and 2.36± 0.1, respectively. These values were found to be in good agreement with previously published results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信