无限域上三个贝塞尔函数积的积分

S. Auluck
{"title":"无限域上三个贝塞尔函数积的积分","authors":"S. Auluck","doi":"10.3888/TMJ.14-15","DOIUrl":null,"url":null,"abstract":"Fourier-space representation of the partial differential equations describing nonlinear dynamics of continuous media in cylindrical geometry can be achieved using Chandrasekhar–Kendall (C–K) functions defined over infinite domain as an orthogonal basis for solenoidal vector fields and their generating function and its gradient as orthogonal bases for scalar and irrotational vector fields, respectively. All differential and integral operations involved in translating the partial differential equations into transform space are then carried out on the basis functions, leaving a set of time evolution equations, which describe the rate of change of the spectral coefficient of an evolving mode in terms of an aggregate effect of pairs of interacting modes computed as an integral over a product of spectral coefficients of two physical quantities along with a kernel, which involves the following integral:","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"On the Integral of the Product of Three Bessel Functions over an Infinite Domain\",\"authors\":\"S. Auluck\",\"doi\":\"10.3888/TMJ.14-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fourier-space representation of the partial differential equations describing nonlinear dynamics of continuous media in cylindrical geometry can be achieved using Chandrasekhar–Kendall (C–K) functions defined over infinite domain as an orthogonal basis for solenoidal vector fields and their generating function and its gradient as orthogonal bases for scalar and irrotational vector fields, respectively. All differential and integral operations involved in translating the partial differential equations into transform space are then carried out on the basis functions, leaving a set of time evolution equations, which describe the rate of change of the spectral coefficient of an evolving mode in terms of an aggregate effect of pairs of interacting modes computed as an integral over a product of spectral coefficients of two physical quantities along with a kernel, which involves the following integral:\",\"PeriodicalId\":91418,\"journal\":{\"name\":\"The Mathematica journal\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Mathematica journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3888/TMJ.14-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.14-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

用无限域中定义的Chandrasekhar-Kendall (C-K)函数作为电磁矢量场的正交基,将其生成函数及其梯度分别作为标量矢量场和无旋转矢量场的正交基,可以实现描述圆柱几何中连续介质非线性动力学的偏微分方程的傅里叶空间表示。将偏微分方程转换为变换空间所涉及的所有微分和积分操作都在基函数上进行,留下一组时间演化方程,这些方程描述了演化模式的谱系数的变化率,其形式是相互作用模式对的聚合效应,计算为两个物理量的谱系数与核的乘积的积分。它涉及到以下积分:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Integral of the Product of Three Bessel Functions over an Infinite Domain
Fourier-space representation of the partial differential equations describing nonlinear dynamics of continuous media in cylindrical geometry can be achieved using Chandrasekhar–Kendall (C–K) functions defined over infinite domain as an orthogonal basis for solenoidal vector fields and their generating function and its gradient as orthogonal bases for scalar and irrotational vector fields, respectively. All differential and integral operations involved in translating the partial differential equations into transform space are then carried out on the basis functions, leaving a set of time evolution equations, which describe the rate of change of the spectral coefficient of an evolving mode in terms of an aggregate effect of pairs of interacting modes computed as an integral over a product of spectral coefficients of two physical quantities along with a kernel, which involves the following integral:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信