{"title":"负二项回归","authors":"Michael L. Zwilling","doi":"10.3888/TMJ.15-6","DOIUrl":null,"url":null,"abstract":"where m > 0 is the mean of Y and a > 0 is the heterogeneity parameter. Hilbe [1] derives this parametrization as a Poisson-gamma mixture, or alternatively as the number of failures before the H1 e aLth success, though we will not require 1 e a to be an integer. The traditional negative binomial regression model, designated the NB2 model in [1], is (2) ln m = b0 + b1 x1 + b2 x2 +o⋯+ bp xp, where the predictor variables x1, x2, ..., xp are given, and the population regression coefficients b0, b1, b2, ..., bp are to be estimated. Given a random sample of n subjects, we observe for subject i the dependent variable yi and the predictor variables x1i, x2i, ..., xpi. Utilizing vector and matrix notation, we let b = H b0 b1 b2 o⋯ bp L¬, and we gather the predictor data into the design matrix X as follows:","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Negative Binomial Regression\",\"authors\":\"Michael L. Zwilling\",\"doi\":\"10.3888/TMJ.15-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"where m > 0 is the mean of Y and a > 0 is the heterogeneity parameter. Hilbe [1] derives this parametrization as a Poisson-gamma mixture, or alternatively as the number of failures before the H1 e aLth success, though we will not require 1 e a to be an integer. The traditional negative binomial regression model, designated the NB2 model in [1], is (2) ln m = b0 + b1 x1 + b2 x2 +o⋯+ bp xp, where the predictor variables x1, x2, ..., xp are given, and the population regression coefficients b0, b1, b2, ..., bp are to be estimated. Given a random sample of n subjects, we observe for subject i the dependent variable yi and the predictor variables x1i, x2i, ..., xpi. Utilizing vector and matrix notation, we let b = H b0 b1 b2 o⋯ bp L¬, and we gather the predictor data into the design matrix X as follows:\",\"PeriodicalId\":91418,\"journal\":{\"name\":\"The Mathematica journal\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Mathematica journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3888/TMJ.15-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.15-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
摘要
其中,m >为Y的平均值,a >为异质性参数。Hilbe[1]将这种参数化派生为泊松- γ混合物,或者作为H1 - e - aLth成功之前的失败次数,尽管我们不要求1 - e - a是整数。传统的负二项回归模型([1]中称为NB2模型)为(2)ln m = b0 + b1 x1 + b2 x2 +o,+ bp xp,其中预测变量x1, x2,…, xp,则总体回归系数b0, b1, b2,…, bp是要估计的。给定n个受试者的随机样本,我们观察受试者i的因变量yi和预测变量x1i, x2i,…xpi。利用向量和矩阵表示法,我们令b = H b0 b1 b2 o⋯bp L´,并将预测数据收集到设计矩阵X中,如下所示:
where m > 0 is the mean of Y and a > 0 is the heterogeneity parameter. Hilbe [1] derives this parametrization as a Poisson-gamma mixture, or alternatively as the number of failures before the H1 e aLth success, though we will not require 1 e a to be an integer. The traditional negative binomial regression model, designated the NB2 model in [1], is (2) ln m = b0 + b1 x1 + b2 x2 +o⋯+ bp xp, where the predictor variables x1, x2, ..., xp are given, and the population regression coefficients b0, b1, b2, ..., bp are to be estimated. Given a random sample of n subjects, we observe for subject i the dependent variable yi and the predictor variables x1i, x2i, ..., xpi. Utilizing vector and matrix notation, we let b = H b0 b1 b2 o⋯ bp L¬, and we gather the predictor data into the design matrix X as follows: