{"title":"放射治疗中呼吸跟踪与同步仿真模型的建立","authors":"H. Sekine, Yuki Otani","doi":"10.3888/TMJ.16-12","DOIUrl":null,"url":null,"abstract":"Remarkable advances have been made in radiotherapy for cancer. Tumors inside the body that move with respiration can now be tracked during irradiation or can be irradiated at a specific phase of respiration [1]. Since radiation of these wavelengths is invisible to the human eye, it is not possible to see whether a tumor that is moving during respiration is being irradiated accurately. Therefore, simulations that use the actual respiration wave to show the tumor being irradiated are useful for training and to explain the procedure to patients.","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Simulation Models of Respiratory Tracking and Synchronizing for Radiotherapy\",\"authors\":\"H. Sekine, Yuki Otani\",\"doi\":\"10.3888/TMJ.16-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remarkable advances have been made in radiotherapy for cancer. Tumors inside the body that move with respiration can now be tracked during irradiation or can be irradiated at a specific phase of respiration [1]. Since radiation of these wavelengths is invisible to the human eye, it is not possible to see whether a tumor that is moving during respiration is being irradiated accurately. Therefore, simulations that use the actual respiration wave to show the tumor being irradiated are useful for training and to explain the procedure to patients.\",\"PeriodicalId\":91418,\"journal\":{\"name\":\"The Mathematica journal\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Mathematica journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3888/TMJ.16-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.16-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Simulation Models of Respiratory Tracking and Synchronizing for Radiotherapy
Remarkable advances have been made in radiotherapy for cancer. Tumors inside the body that move with respiration can now be tracked during irradiation or can be irradiated at a specific phase of respiration [1]. Since radiation of these wavelengths is invisible to the human eye, it is not possible to see whether a tumor that is moving during respiration is being irradiated accurately. Therefore, simulations that use the actual respiration wave to show the tumor being irradiated are useful for training and to explain the procedure to patients.